-
Notifications
You must be signed in to change notification settings - Fork 1
/
responses.py
412 lines (338 loc) · 11.6 KB
/
responses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# from model import *
# from func import *
# # from func import get_text
# # from func import remove_stop_words_for_input
# # from func import encode_input_text
# # from func import get_pred
# # from func import model1
# # from func import bot_precausion
# # from func import get_response
# # from func import bot_response
# # from func import joblib
# # from func import tokenizer
# # from func import df2
# # In[86]:
# # ## Predictions
# # In[84]:
# df_input = get_text('How to find mental health professional for myself?')
# # load artifacts
# tokenizer_t = joblib.load('tokenizer_t.pkl')
# vocab = joblib.load('vocab.pkl')
# df_input = remove_stop_words_for_input(tokenizer,df_input,'questions')
# encoded_input = encode_input_text(tokenizer_t,df_input,'questions')
# pred = get_pred(model1,encoded_input)
# pred = bot_precausion(df_input,pred)
# response = get_response(df2,pred)
# bot_response(response)
# import libraries
#-----------------------------------------------------------------------------------------------------------------
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import string
import re
import joblib
import json
from collections import Counter
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import pickle
import tensorflow as tf
import tensorflow.keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import plot_model
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Embedding, Dense,LayerNormalization, Flatten, Conv1D, MaxPooling1D, SimpleRNN, GRU, LSTM, LSTM, Input, Embedding, TimeDistributed, Flatten, Dropout,Bidirectional
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
# download dependencies
# uncomment if running for the first time
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
# load data
# from google.colab import files
# uploaded = files.upload()
# with open('mentalhealth - Copy.json') as file:
# data = json.load(file)
import json
file = open('D:\coding_pranav\inheritance\chatbot\mentalhealth - Copy.json')
data = json.load(file)
data
# data
# convert to dataframes
def frame_data(feat_1,feat_2,is_pattern):
is_pattern = is_pattern
df = pd.DataFrame(columns=[feat_1,feat_2])
for intent in data['intents']:
if is_pattern:
for pattern in intent['patterns']:
w = pattern
df_to_append = pd.Series([w,intent['tag']], index = df.columns)
df = df.append(df_to_append,ignore_index=True)
else:
for response in intent['responses']:
w = response
df_to_append = pd.Series([w,intent['tag']], index = df.columns)
df = df.append(df_to_append,ignore_index=True)
return df
df1 = frame_data('questions','labels',True)
df1.head()
# no of patterns
(df1.labels.value_counts(sort=False))
df2 = frame_data('response','labels',False)
df2.head()
# preprocessing text
lemmatizer = WordNetLemmatizer()
vocab = Counter()
labels = []
def tokenizer(entry):
tokens = entry.split()
re_punc = re.compile('[%s]' % re.escape(string.punctuation))
tokens = [re_punc.sub('', w) for w in tokens]
tokens = [word for word in tokens if word.isalpha()]
tokens = [lemmatizer.lemmatize(w.lower()) for w in tokens]
tokens = [word.lower() for word in tokens if len(word) > 1]
return tokens
def remove_stop_words(tokenizer,df,feature):
doc_without_stopwords = []
for entry in df[feature]:
tokens = tokenizer(entry)
joblib.dump(tokens,'tokens.pkl')
doc_without_stopwords.append(' '.join(tokens))
df[feature] = doc_without_stopwords
return
def create_vocab(tokenizer,df,feature):
for entry in df[feature]:
tokens = tokenizer(entry)
vocab.update(tokens)
joblib.dump(vocab,'vocab.pkl')
return
import nltk
nltk.download('omw-1.4')
create_vocab(tokenizer,df1,'questions')
vocab
vocab_size = len(vocab)
vocab_size
df1.groupby(by='labels',as_index=False).first()['questions']
# test_list contains the first element of questions
test_list = list(df1.groupby(by='labels',as_index=False).first()['questions'])
test_list
# indices of the testing dataset
test_index = []
for i,_ in enumerate(test_list):
idx = df1[df1.questions == test_list[i]].index[0]
test_index.append(idx)
test_index
# train indices are the all indices minus the testing indices
train_index = [i for i in df1.index if i not in test_index]
train_index
def convert_seq(df,feature):
# text = ' '.join(list(vocab.keys()))
t = Tokenizer()
entries = [entry for entry in df[feature]]
print(entries)
print('----')
t.fit_on_texts(entries)
joblib.dump(t,'tokenizer_t.pkl') # why a pkl file
vocab_size = len(t.word_index) +1 # +1 for oov
print(t.word_index)
entries = [entry for entry in df[feature]]
max_length = max([len(s.split()) for s in entries])
print('----')
print("max length of string is : ",max_length)
print('----')
encoded = t.texts_to_sequences(entries)
print(encoded)
padded = pad_sequences(encoded, maxlen=max_length, padding='post')
print('----')
print(padded)
return padded, vocab_size
X,vocab_size = convert_seq(df1,'questions')
with open('tokenizer_t.pkl', 'rb') as f:
data = pickle.load(f)
data.index_word
data.word_counts
X
vocab_size
df_encoded = pd.DataFrame(X)
df_encoded = pd.DataFrame(X)
df1.head(10)
df_encoded['labels'] = df1.labels
df_encoded.head(10)
df_encoded['labels'] = df1.labels
df_encoded.head(10)
from sklearn.preprocessing import LabelEncoder
lable_enc = LabelEncoder()
# encoding the labels
labl = lable_enc.fit_transform(df_encoded.labels)
labl
len(labl)
mapper = {}
for index,key in enumerate(df_encoded.labels):
if key not in mapper.keys():
mapper[key] = labl[index]
mapper
df2
df2.head()
df2.to_csv('response.csv',index=False)
df_encoded.head()
train_index
test_index
train = df_encoded.loc[train_index]
test = df_encoded.loc[test_index]
train
test.head()
train.labels.value_counts()
test.labels.value_counts()
train
X_train = train.drop(columns=['labels'],axis=1)
y_train = train.labels
X_test = test.drop(columns=['labels'],axis=1)
y_test = test.labels
X_train.head()
y_train =pd.get_dummies(y_train).values
y_test =pd.get_dummies(y_test).values
X_test
X_train
y_train
y_train[0]
y_test
y_train[0].shape,y_test[0].shape
X_train.shape
X_test.shape
max_length = X_train.shape[1]
output = 16 # no of classes
early_stopping = EarlyStopping(monitor='val_loss',patience=10) #patience : number of epochs with no improvement after which training will be stopped
checkpoint = ModelCheckpoint("model-v1.h5",
monitor="val_loss",
mode="min",
save_best_only = True,
verbose=1)
reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, patience = 3, verbose = 1, min_delta = 0.0001)
callbacks = [early_stopping,checkpoint,reduce_lr]
import json
f = open('D:\coding_pranav\inheritance\chatbot\mentalhealth.json')
data = json.load(f)
df = pd.DataFrame(data['intents'])
df
df = pd.DataFrame(data['intents'])
df
dic = {"tag":[], "patterns":[], "responses":[]}
for i in range(len(df)):
ptrns = df[df.index == i]['patterns'].values[0]
rspns = df[df.index == i]['responses'].values[0]
tag = df[df.index == i]['tag'].values[0]
for j in range(len(ptrns)):
dic['tag'].append(tag)
dic['patterns'].append(ptrns[j])
dic['responses'].append(rspns)
df = pd.DataFrame.from_dict(dic)
df
df['tag'].unique()
from tensorflow.keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer(lower=True, split=' ')
tokenizer.fit_on_texts(df['patterns'])
tokenizer.get_config()
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
ptrn2seq = tokenizer.texts_to_sequences(df['patterns'])
X = pad_sequences(ptrn2seq, padding='post')
print('X shape = ', X.shape)
lbl_enc = LabelEncoder()
y = lbl_enc.fit_transform(df['tag'])
print('y shape = ', y.shape)
print('num of classes = ', len(np.unique(y)))
def define_model1(vocab_size, max_length):
model1 = Sequential()
model1.add(Input(shape=(X.shape[1])))
model1.add(Embedding(input_dim=vocab_size+1, output_dim=100, mask_zero=True))
model1.add(LSTM(32, return_sequences=True))
model1.add(LayerNormalization())
model1.add(LSTM(32, return_sequences=True))
model1.add(LayerNormalization())
model1.add(LSTM(32))
model1.add(LayerNormalization())
model1.add(Dense(128, activation="relu"))
model1.add(LayerNormalization())
model1.add(Dropout(0.2))
model1.add(Dense(128, activation="relu"))
model1.add(LayerNormalization())
model1.add(Dropout(0.2))
model1.add(Dense(len(np.unique(y)), activation="softmax"))
model1.compile(optimizer='adam', loss="sparse_categorical_crossentropy", metrics=['accuracy'])
# summarize defined model
model1.summary()
#plot_model(model1, to_file='model_1.png', show_shapes=True)
return model1
print(vocab_size,max_length)
model1 = define_model1(vocab_size, max_length)
history1 = model1.fit(x=X,
y=y,
batch_size=10,
callbacks=[tensorflow.keras.callbacks.EarlyStopping(monitor='accuracy', patience=3)],
epochs=70)
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
def get_text(str_text):
print(str_text)
input_text = [str_text]
df_input = pd.DataFrame(input_text,columns=['questions'])
df_input
return df_input
from tensorflow.keras.models import load_model
model = model1
tokenizer_t = joblib.load('tokenizer_t.pkl')
vocab = joblib.load('vocab.pkl')
def tokenizer(entry):
tokens = entry.split()
re_punc = re.compile('[%s]' % re.escape(string.punctuation))
tokens = [re_punc.sub('', w) for w in tokens]
tokens = [word for word in tokens if word.isalpha()]
tokens = [lemmatizer.lemmatize(w.lower()) for w in tokens]
# stop_words = set(stopwords.words('english'))
# tokens = [w for w in tokens if not w in stop_words]
tokens = [word.lower() for word in tokens if len(word) > 1]
return tokens
def remove_stop_words_for_input(tokenizer,df,feature):
doc_without_stopwords = []
entry = df[feature][0]
tokens = tokenizer(entry)
doc_without_stopwords.append(' '.join(tokens))
df[feature] = doc_without_stopwords
return df
def encode_input_text(tokenizer_t,df,feature):
t = tokenizer_t
entry = [df[feature][0]]
encoded = t.texts_to_sequences(entry)
padded = pad_sequences(encoded, maxlen=18, padding='post')
return padded
def get_pred(model,encoded_input):
pred = np.argmax(model.predict(encoded_input))
return pred
def bot_precausion(df_input,pred):
words = df_input.questions[0].split()
if len([w for w in words if w in vocab])==0 :
pred = 1
return pred
def get_response(df2,pred):
upper_bound = df2.groupby('labels').get_group(pred).shape[0]
r = np.random.randint(0,upper_bound)
responses = list(df2.groupby('labels').get_group(pred).response)
return responses[r]
def bot_response(response,):
print(response)
# correct response
question='hi'
df_input = get_text(question)
# load artifacts
tokenizer_t = joblib.load('tokenizer_t.pkl')
vocab = joblib.load('vocab.pkl')
df_input = remove_stop_words_for_input(tokenizer,df_input,'questions')
encoded_input = encode_input_text(tokenizer_t,df_input,'questions')
pred = get_pred(model1,encoded_input)
pred = bot_precausion(df_input,pred)
response = get_response(df2,pred)
bot_response(response)