
Presto on Spark
Andrii Rosa, Wenlei Xie

Agenda
● Motivation
● Design overview
● Early results
● Development status
● Q&A

Presto Architecture Overview
● Designed for Interactive use cases
● Classic MPP architecture
● In-memory streaming shuffle

○ Low latency
○ More operations can be done in parallel

● Standalone, multi-tenant service
○ Always “warm”, no “startup” delay
○ Better resource sharing (dynamic

parallelism, shared memory)

https://research.fb.com/publications/presto-sql-on-everything/

https://research.fb.com/publications/presto-sql-on-everything/

Scalability Limitations
● 5TB distributed memory limit

○ With streaming shuffle Aggregations and Joins have to be processed all at once

● Number of workers is limited to ~300 reducers and ~600 mappers
○ NxN streaming doesn’t scale
○ Single coordinator

● Queries that run more than 8 hours have ~50% of finishing
○ No failure recovery
○ Multi-tenant environment
○ No resource isolation

● At Facebook we run Presto for Batch
○ 5 times larger deployment for Batch vs Interactive
○ Batch requires higher memory limits, parallelism, and reliability

Presto Unlimited
● Brings MapReduce style

processing to MPP database
● Stores intermediate (shuffle) data

on disk
● Allows more granular joins and

aggregations processing
● Adds support to run large memory

queries (>5TB)
● Increases reliability by allowing

partial failure recovery
● Can be run on existing Presto

deployments

https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

https://prestodb.io/blog/2019/08/05/presto-unlimited-mpp-database-at-scale

Presto Unlimited Limitations
● Number of workers still limited to number of nodes in cluster (600)
● No resource isolation

○ Multitenant environment
○ Single ill behaving query can jeopardize the entire cluster

● No granular failure recovery
○ In some cases requires the whole stage to be restarted

● Hard to utilize off-peak capacities
○ Lack of resource allocation flexibility
○ Inability to easily add/remove worker nodes

Spark Architecture
● Designed for large scale, reliable ETL processing
● Supports granular failure recovery
● Isolated containers (JVM) for each query
● Supports thousands of mappers/reducers in parallel

○ Driver (coordinator) is allocated per query
○ Shuffle algorithm is more scalable
○ Supports disaggregated shuffle

■ Apache Crail (https://crail.apache.org/)
■ Cosco (https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service)

● Flexible at resource allocation
○ Easy to add/remove worker nodes from the cluster

https://crail.apache.org/
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service

Why not simply use Spark?
● Presto SQL reusability and unification

○ Translation based solution doesn’t scale
○ Always hard to translate long tail

● UDFs
● Additional SQL Features

○ Lambdas
○ Powerful geospatial toolkit

● Query federation capabilities
● Efficient columnar evaluation engine

○ Project Aria

Presto on Spark Architecture
● Runs Presto as a library

○ No dependency on Presto deployment
model

○ Custom batch job

● Transforms Presto distributed plan
into Spark RDD

● Runs Presto evaluation code as an
opaque “mapper” or “reducer”

Design Doc:
https://tinyurl.com/presto-on-spark-design

spark-submit

https://tinyurl.com/presto-on-spark-design

Spark DAG
SELECT orderdate, count(*)
FROM (
 SELECT l.orderkey, l.linenumber, o.orderstatus, o.orderdate
 FROM lineitem l
 JOIN orders o
 ON l.orderkey = o.orderkey
 WHERE l.orderkey % 223 = 42 and o.orderstatus = 'O'
)
GROUP BY 1
ORDER BY 1 DESC

spark-submit

spark-submit \
 --master spark://spark-master:7077 \
 --class com.facebook.presto.spark.launcher.PrestoSparkLauncher \
 /presto/presto-spark-launcher/target/presto-spark-launcher-0.235-SNAPSHOT.jar \
 --package
 /presto/presto-spark-package/target/presto-spark-package-0.235-SNAPSHOT.tar.gz \
 --config /presto/etc/config.properties \
 --catalogs /presto/etc/catalogs \
 --catalog hive \
 --schema default \
 --file /tmp/query.sql

Early results
● 50TB+ distributed memory
● 3x reduction in wall time
● 30% - 50% increase in CPU time

○ Shuffle requires sorting
○ Row oriented format is not very efficient

Development Status
● Initial version is merged to OSS

○ https://github.com/prestodb/presto/pull/13760

● Working on supporting more query shapes
○ N-way join
○ Broadcast Join
○ Bucketed tables support

● Working on improving CPU efficiency
○ More efficient row oriented format for shuffle

● Working on improving integration with Spark
○ Presto threading model is different

● Working on better integration with operational tooling
○ Event Listener
○ Execution statistics

https://github.com/prestodb/presto/pull/13760

Q&A

