Neutrino
(Super) low latency Presto SQL

Devesh Agrawal, Databricks (formerly Uber)
Bhavani Sudha, Uber

What is Neutrino?

e A federation layer on top of other “online” databases ranging from
Apache-Pinot, AresDB, ElasticSearch, Cassandra, Sharded MySQL etc

e Speaks regular Presto SQL

e Aregular microservice: POST SQL Query, Get synchronous answer

e Just another deployment of Presto core: same code, different configs

What is Neutrino?

Client
| Presto Client |

HTTP on|Muttley

Neutrino replicas|(stateless)

> e,
(query planning, translation, post-processing)

Metastore
(schema, capabilities) | RTA Connector || Schemaless || Cassandra |

=7 —

Who uses Neutrino at Uber?

e Custom dashboards used by Uber City Operations:
o Terra: Map of restaurant hotspots in a city
o Wisdom: Analysis of incoming mobile bug reports
o uEconomics: Price surge mismatch at city block level granularity

e \What do they need ?

o Fresh real time data
o Low latencies. Interactive exploration.
o Usually Geographic visualization

Why Federation/SQL ?

e Futureproofing: Indirection !
o [Easy to evolve backend storage
o Switch backend engines based based on query shape

e Onboarding:

o Everybody (should) know SQL already
o Its googleable.

e Tooling/Dev experience:

o Easy to iterate on the SQL query vs code
Visualization and other “SQL tools” integration
Express joins, transformations in SQL instead of code
See data bugs quicker
Let the optimizer figure out the right join strategy

o O O O

Neutrino’s key innovations in Presto

e Aggressive and Complete Pushdown

o Maximally leverage the underlying engine

o Push down aggregations, group by, even Joins

o Leverage and enhance Facebook’s connector plan optimizer framework
e Low latency and Microservice

o Reduce “Presto Overhead” 800 milliseconds to less than 70 milliseconds

o Neutrino acts as a synchronous REST microservice
o Neutrino is stateless and trivially scaleable

Innovation 1: Aggressive Pushdown

e Why?
o Pulling raw data from underlying engine is too slow (milliseconds instead of a minute)
o Does not leverage the underlying engine hardware like GPU for AresDB
e Pushdown implemented as optimizer rules:
o Runs after other optimizers
o Uses the new “Connector Optimizer” framework that lets connectors optimize the plan
e Result:
o Can push aggregations, group by, equi joins and spatial joins.
o Even complex expressions like approx_distinct, approx_percentile
o Correctly synthesize the underlying engine query using the pushed plan subtree

Innovation 2: Reducing overhead

e Each Neutrino instance is a coordinator+worker combo
e Overhead stemmed from three main sources:

O O O O O

HTTP based Task Assignment b/w coordinator to worker (upto 100 ms)
HTTP based Result fetching b/w coordinator to worker (upto 100 ms)
Superfluous number of stages for a simple “Scan only” query (upto 50 ms)
Unnecessary round trips in assigning splits to tasks (upto 50 ms)

Remove resource groups to avoid lock contention (upto 25 ms)

Neutrino deployment results at Uber

Neutrino overheads range from 10ms to 100ms
o Remaining time is for underlying engine query
o Query optimization can take upto 70ms

Same codebase as regular Presto (Hive) with different configs
Deployed as regular Java microservice on Uber’s uDeploy
Stateless and Trivially scaleable: HTTP proxy for load balancing
Integrates with Uber’s monitoring and logging frameworks

Production experience and lessons

e Used by three ops oriented dashboards:

o Terra: Live Uber Eats restaurant monitoring and map display

o Wisdom: Live Uber mobile bug reports and exploration

o uEconomics: Monitoring surge pricing
e Development in progress

o uGraph: Uber graph engine leveraging the cassandra connector

o Neutrino for “SQL on microservices”: Querying services using regular SQL
e Lessons

o Develop with the customer: Close coordination helped prioritize pushdown features
o Measuring overhead is hard

Query

date_trunc(
"hour',
from_unixtime(request_at, 'America/Los_Angeles')

))
count(*) as completed_trips

rta_staging.rta.eats_trips

request_at (C
to_unixtime(

at_timezone(now() i , "America/Los_Angeles")

to_unixtime(
date_trunc('hour', at_timezone(now(), 'America/Los_Angeles'))

(¢ (non())) / 5) * ol

Before

Output

Project

Aggregate (final)

LocalExchange

Aggregate (partial)

Project

ScanFilterProject

After

Output

TableScanPipline
(AQL)
{"queries":[{"dimensions":[{"sqlExp

ression":"request_at","timeBucketiz

er":"hour","timeUnit":"second"}],"m

easures":[{"sqlExpression":"count(*
)"}1,"table":"eats_trips","timeFilt
er":{"column":"request_at","from":"
1574377013","to":"1574380500", "time

Zone":"America/Los_Angeles"}]}

Open Sourcing plan: Push everything upstream !

e All development on prestodb trunk. No forking.

e Connectors:
o Pinot Connector: Already in PrestoDb trunk
o AresDB connector: In Progress
e Low latency:
o Query timeline instrumentation: [PR-13649]
Single Stage Plan:
Avoid HTTP within local host: In Progress
Single shot split assignment:
Measuring presto overhead:

e API Changes:
o Synchronous POST response: [PR-13696]

O O O O

Outstanding issues and Future directions

e High planning (query optimization) time: Upto 70 milliseconds !
o Need true query parameterization
o https://qithub.com/prestosqgl/presto/issues/1141

e More connectors:

o Thrift on Steroids: Seamless and easy SQL over microservices
o Cassandra, Schemaless, HBase, Elastic Search

e Reducing Latency p99:

o Making coordinator more push/event based

Thanks to the Presto Community at Facebook !

e Shout out to James, Yi and Saksham
e Your planner refactoring is really what made all this possible

e Great to work with!
o Very supportive and collaborative
o Quick review of PR
o Quick engagement and discussion over IM and in person

Questions ?

