
Presto at LinkedIn and Latency
Sensitive Queries

Shardool
Engineer, LinkedIn

Agenda

1 Applications and Usage

2 Presto Query Analysis

3 Query Identification

4 Previous Work

5 Future Plans

6 Q&A

2

Applications and Usage

• Reporting - Understanding business
performance and activity

• Economic Research - Economics
research powered by the data we
have

• Customer Service - Investigating
incorrect behavior on the site

3

Diverse range of applications

• Data Products - Building products
for our user powered by data

• System Engineering - Analyzing
internal system performance

Applications - Clients and Access Patterns

4

• Interactive Query Tools

• Applications

○ Customer service tools

○ Debugging tools

• Dashboards

○ Tableau

○ Internal Tools

■Raptor (Reporting tool)

Query Analytics

5

How to analyze usage across
entire range of applications?

• User growth – Who’s using Presto?
Who’s new?

• Tools used – What clients and tools
do users use ?

• Expensive queries – Where are the
resources going?

• Resource intensive tables – Which
tables are worth optimizing?

• Solution - Event Listener

Query Analytics - Limitation

6

No streamlined way to
address frequent questions
referring to specific queries

• Why does my dashboard take longer
to load than it used to?

• Why are some critical queries running
slower today?

• Can the run-time for a specific query
be made more predictable?

• Expecting a sudden jump in
application usage, can we plan for it ?

Query Analytics - Takeaways

7

• Users care deeply about execution
characteristics of some of their
queries

• These queries are executed
repeatedly. Examples -

○ Periodic reports

○ Dashboard loads

Realization

• No generic way to identify
different executions of what an
end-user considers the ‘same’
query

Opens multiple possibilities for
recurring queries

Query Identification

• Query Specific Analytics - frequency,
Nth percentile execution time

• Resource Usage - capacity usage of
specific queries

• Alternate Scheduling - allowing for
‘better’ execution characteristics for
specific queries

• SLA - mutually agreed latencies for
queries

Query Identification - Application Example

9

• Raptor - Internal Dashboard Tool
○ Large number of users
○ Certain dashboards are very popular

• Example - query from a dashboard

• Query Template - usually such queries
are generated from a template by an
application

• End-users typically refer to every query
from a single template as the ‘same’
query

• Represents a large variety of
applications

select eventdate, count(distinct user)
from service_events where
eventdate >= '2019-02-07' and
eventdate <= '2019-03-08'
group by eventdate;

Query Identification - Considerations

10

• Online vs offline - identifying a query
before it starts executing makes it
possible to schedule or plan it
differently

• Flexibility of identification - should
allow for some flexibility based on the
use-case. For example - if a query is
run on 6 days of data instead of a
week, then it should still be possible
to identify them as ‘same’.

• Variety of Clients - work across a
diverse set of applications.

○ Internal clients

○ 3rd party BI tools

• Ease of configuration - minimize
amount of configuration needed for
identifying individual queries

Query Identification - Approach

11

Query Identification - Query Class & Trait

A ‘Query Class’ represents a set of
queries which are similar but allows for

minor variations which can be
configured in advance.

Example queries
Query 1
select avg(extendedprice) from lineitem
where shipmode = 'AIR';

Query 2
select avg(extendedprice) from lineitem
where shipmode = 'SHIP';

12

A ‘Query Trait’ defines attributes of a
query. A combination of traits can

associate the query to a unique class.

Examples of possible traits
• Username
• Application specific identifiers
○ Such as dashboard Ids

• Regex matching query string
• Client Tags

Query Identification - Example 1

Sample Queries

Query 1
select avg(extendedprice) from
lineitem where shipmode = 'AIR';

Query 2
select avg(extendedprice) from
lineitem where shipmode = 'SHIP';

13

Example Traits

Trait 1 - Query Regex Trait
select avg(extendedprice) from
lineitem where shipmode = [:alpha:];

Trait 2 - Session User
price_analysis

Trait 3 - Session Property
dashboard_id = ‘42’

Query Identification - Example 2

Sample Queries

Query 1
select shipmode, avg(extendedprice) from
lineitem where shipdate >= date '1998-11-24'
and shipdate < date '1998-12-01' group by
shipmode;

Query 2
select shipmode, avg(extendedprice) from
lineitem where shipdate >= date '1998-11-17'
and shipdate < date '1998-11-24' group by
shipmode;

14

Example Traits

Trait 1 - Query Regex Trait
select shipmode, avg(extendedprice) from
lineitem where shipdate >= date [:date:] and
shipdate < date [:date:] group by shipmode;

Trait 2 - Session User
price_analysis

Query Identification

15

Class ID Trait Name Trait Value

classX query_regex ‘...shipmode =
[:alpha:]’

classX session_user price_analysis

classX dashboard_id 42

classY query_regex ‘...shipdate <
date [:date:]..’

classY session_user price_analysis

Identification - performed by looking up
traits and comparing against the query
metadata

Query Identification - Notes

16

• Identification runs on coordinator

• Identified class IDs are emitted along
with query lifecycle events

• Trait configurations can be stored
externally (example MySql, Postgres,
Configuration files)

• Currently a small number of simple
traits are exposed

• Can be extended to more complex
traits for example based on

○ Query Analysis

○ Intermediate Representation

Query Identification - Query Class Specification

17

Configuration - for new query classes
the traits are determined through an
offline procedure

The Value of Query Identification

18

Associating a unique ID with
execution statistics of

latency sensitive queries

Directly allows analytics on recurring
queries including capacity use

Enables upfront discussions about
latency needs of specific queries

Doing this before execution on
coordinator allows query specific
scheduling and planning changes

User Expectations

• On-boarding an initial set of applications
already shows the value of having these
discussions with users upfront

• Deviations from SLA can be tracked

• Feeds into capacity planning discussions

• Query identification allows
negotiating an acceptable runtime for
a query (SLA)

○ Can be done for any Query Class

○ Negotiated in advance

○ Used as a semi-formal agreement

19

Improving SLA Compliance

• Session Properties

○ Can use the
SessionPropertiesConfigurationManager

○ Existing Framework

○ Provide ‘preferential’ treatment to
certain query classes

• Scheduling Changes

○ Efficiency vs Performance

○ Choosing different NodeSelectors
based on class IDs

○ Static Isolation of nodes for running
specific use cases

Several avenues are under consideration to increase the likelihood of SLAs being
met for queries.

20

Query Identification - Gotchas

• Small differences in filter values can
lead to significant differences in query
execution, especially for complex
queries

○ Worst case SLA may still be
meaningful

○ Split into different classes if needed

• Some queries may be executed as
part of an EXECUTE statement

○ Patch for capturing corresponding
PREPARE statements is under
review

https://github.com/prestodb/presto/pull/
12020

21

https://github.com/prestodb/presto/pull/12020

Query Identification - Key Takeaways

Identify repeated
executions of the

‘same’ query

Identification

Analyze recurring
queries

Analytics

Online identification
enables alternate

scheduling

Scheduling

Toolkit for handling a
rich variety of clients

Flexibility

22

Updates on Previous Work

• Transportable UDFs

• Hive View Translation

Slides from previous summit are
located here

https://www.starburstdata.com/technical-blog/presto-summit-2018-recap/

Transportable UDFs

• Framework for writing UDFs that are portable
across a variety of engines

• Supports Apache Spark, Apache Hive, and Presto

• Developed at LinkedIn and open sourced

• https://github.com/linkedin/transport

24

https://github.com/linkedin/transport

Transportable UDF Example

public class MapFromTwoArraysFunction extends StdUDF2<StdArray,
StdArray, StdMap> implements TopLevelStdUDF {

private StdType _mapType;

@Override
public StdMap eval(StdArray a1, StdArray a2) {
if (a1.size() != a2.size()) {
return null;

}
StdMap map = getStdFactory().createMap(_mapType);
for (int i = 0; i < a1.size(); i++) {
map.put(a1.get(i), a2.get(i));

}
return map;

}

@Override
public void init(StdFactory stdFactory) {
super.init(stdFactory);
_mapType =

getStdFactory().createStdType(getOutputParameterSignature());
}.....
}

• Core function logic written
only once

• Simple wrapper functions
required for every engine -
auto generation in progress

25

Hive Views to Presto SQL Translation

• Wealth of views written in Hive (Dali Views)

• Translate through Apache Calcite

• Coverage for most Hive features

26

Future Work

• Presto on YARN

○ Available capacity on YARN clusters

○ Improved resource utilization and
elasticity

• Log Analytics

○ Analysis of service logs

○ Experimenting with Presto

27

• Partitioning

○ Extend the current support for

■Co-partitioning

■Grouped Execution

