Skip to content

Latest commit

 

History

History
118 lines (99 loc) · 3.68 KB

deep_learning_setup.md

File metadata and controls

118 lines (99 loc) · 3.68 KB

This script is for setting up CUDA, cuDNN, Python 2 or 3, Tensorflow, Keras, Pytorch, OpenCV with Dlib and Theano on Ubuntu 16.04.

  1. Prerequisites:
sudo apt-get update
sudo apt-get upgrade
  1. Install Dependencies:
sudo apt-get install -y build-essential cmake gfortran git pkg-config 
sudo apt-get install -y python-dev software-properties-common wget vim
sudo apt-get autoremove
  1. Cuda Installation: (for cuda-8.0):
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install -y cuda-8.0

To check the status, do nvidia-smi If it is a different version of cuda, download cuda from here and follow step 3.

  1. cuDNN-6.0 setup: Go to NVIDIA cuDNN and download the required cuDNN file (6.0 recommended with cuda-8.0)
tar xvf cudnn-8.0-linux-x64-v6.0.tgz
sudo cp -P cuda/lib64/* /usr/local/cuda/lib64/
sudo cp cuda/include/* /usr/local/cuda/include/

Update the cuDNN Paths:

echo 'export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"' >> ~/.bashrc
echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc
echo 'export PATH="/usr/local/cuda/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc
  1. Install DL Frameworks requirements:
sudo apt-get update
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler libopencv-dev

If you see any warning such as: /usr/lib/nvidia-375/libEGL.so.1 not a symbolic link, setup the symbolic links using:

sudo mv /usr/lib/nvidia-375/libEGL.so.1 /usr/lib/nvidia-375/libEGL.so.1.org
sudo mv /usr/lib32/nvidia-375/libEGL.so.1 /usr/lib32/nvidia-375/libEGL.so.1.org
sudo ln -s /usr/lib/nvidia-375/libEGL.so.375.82 /usr/lib/nvidia-375/libEGL.so.1
sudo ln -s /usr/lib32/nvidia-375/libEGL.so.375.82 /usr/lib32/nvidia-375/libEGL.so.1
  1. Install Python packages:
sudo apt-get install -y --no-install-recommends libboost-all-dev doxygen
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libblas-dev 
sudo apt-get install -y libatlas-base-dev libopenblas-dev libgphoto2-dev libeigen3-dev libhdf5-dev 
 
sudo apt-get install -y python-dev python-pip python-nose python-numpy python-scipy
sudo apt-get install -y python3-dev python3-pip python3-nose python3-numpy python3-scipy

Installing Different Deep Learning Frameworks:

  1. Tensorflow, Theano, Keras, dlib and PyTorch:
  • Python 2:
pip install numpy scipy matplotlib scikit-image scikit-learn ipython protobuf jupyter
 
# If you do not have CUDA installed
pip install tensorflow
# If you have CUDA installed
pip install tensorflow-gpu 
pip install Theano 
pip install keras
pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp27-cp27mu-manylinux1_x86_64.whl
pip install dlib
deactivate
  • Python 3:
pip install numpy scipy matplotlib scikit-image scikit-learn ipython protobuf jupyter
 
# If you do not have CUDA installed
pip install tensorflow
# If you have CUDA installed
pip install tensorflow-gpu 
 
pip install Theano 
pip install keras
pip install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp35-cp35m-manylinux1_x86_64.whl
pip install dlib
 
deactivate

Recheck all the frameworks installation in python2 or python3 shell using:

import numpy
numpy.__version__
import theano
theano.__version__
import tensorflow
tensorflow.__version__
import keras
keras.__version__
import torch
torch.__version__
import cv2
cv2.__version__

Install OpenCV-3.4 from here.