diff --git a/thinkCausal/R/mod_analysis_balance.R b/thinkCausal/R/mod_analysis_balance.R
index 5ffeddac..0feee7d3 100644
--- a/thinkCausal/R/mod_analysis_balance.R
+++ b/thinkCausal/R/mod_analysis_balance.R
@@ -158,23 +158,33 @@ mod_analysis_balance_server <- function(id, store){
treatment_col <- grep("^Z_", names(X), value = TRUE)
outcome_col <- grep("^Y_", names(X), value = TRUE)
- if(input$analysis_balance_select == 'Plot varibables with most imbalance'){
- .confounders <- colnames(X)[colnames(X)%notin% c(treatment_col, outcome_col)]
+ if(input$analysis_balance_select == 'Plot variables with most imbalance'){
+ .confounders <- colnames(X)[colnames(X) %notin% c(treatment_col, outcome_col)]
+ # stop here if there are no columns selected
+ validate(need(length(.confounders) > 0,
+ "No columns available or currently selected"))
+ p <- plotBart::plot_balance(.data = X,
+ treatment = treatment_col,
+ confounders = .confounders,
+ compare = input$analysis_balance_type,
+ estimand = input$analysis_balance_estimand,
+ limit_catagorical = input$analysis_balance_cat + 1,
+ limit_continuous = input$analysis_balance_cont + 1
+ )
}else{
.confounders <- input$analysis_balance_select_var
+ # stop here if there are no columns selected
+ validate(need(length(.confounders) > 0,
+ "No columns available or currently selected"))
+ p <- plotBart::plot_balance(.data = X,
+ treatment = treatment_col,
+ confounders = .confounders,
+ compare = input$analysis_balance_type,
+ estimand = input$analysis_balance_estimand
+ )
}
- # stop here if there are no columns selected
- validate(need(length(.confounders) > 0,
- "No columns available or currently selected"))
- p <- plotBart::plot_balance(.data = X,
- treatment = treatment_col,
- confounders = .confounders,
- compare = input$analysis_balance_type,
- estimand = input$analysis_balance_estimand,
- limit_catagorical = input$analysis_balance_cat,
- limit_continuous = input$analysis_balance_cont
- )
+
# add theme
p <- p & store$options$theme_custom + ggplot2::theme(legend.position = 'none')
diff --git a/thinkCausal/R/mod_analysis_visualize.R b/thinkCausal/R/mod_analysis_visualize.R
index ac228d90..ca2d0540 100644
--- a/thinkCausal/R/mod_analysis_visualize.R
+++ b/thinkCausal/R/mod_analysis_visualize.R
@@ -133,7 +133,7 @@ mod_analysis_visualize_ui <- function(id){
),
selectInput(
inputId = ns("analysis_eda_variable_facet"),
- label = "Panel variable: ",
+ label = "Group by: ",
multiple = FALSE,
choices = c("None", NULL),
selected = "None"
@@ -143,7 +143,7 @@ mod_analysis_visualize_ui <- function(id){
ns = ns,
selectInput(
inputId = ns("analysis_eda_variable_facet_second"),
- label = "Second panel variable: ",
+ label = "Group by second variable: ",
multiple = FALSE,
choices = c("None"),
selected = "None"
diff --git a/thinkCausal/R/mod_learn_colinearity.R b/thinkCausal/R/mod_learn_colinearity.R
index a69328af..d13b023e 100644
--- a/thinkCausal/R/mod_learn_colinearity.R
+++ b/thinkCausal/R/mod_learn_colinearity.R
@@ -58,7 +58,7 @@ mod_learn_colinearity_server <- function(id, id_parent = 'learn_variable_selecti
ns <- session$ns
#ns <- NS(NS(id_parent)(id))
- dat <- readr::read_csv('inst/extdata/colinearity.csv')
+ dat <- readr::read_csv(app_sys('extdata/colinearity.csv'))
dat$ITE <- with(dat, Y1 - Y0)
dat$runner <- 1:500
dat <- dat %>% dplyr::select(runner, dplyr::everything())
diff --git a/thinkCausal/inst/app/www/img/example_balance.png b/thinkCausal/inst/app/www/img/example_balance.png
new file mode 100644
index 00000000..709bfd18
Binary files /dev/null and b/thinkCausal/inst/app/www/img/example_balance.png differ
diff --git a/thinkCausal/inst/app/www/md/help.md b/thinkCausal/inst/app/www/md/help.md
index 21f8a4e2..683d2ed8 100644
--- a/thinkCausal/inst/app/www/md/help.md
+++ b/thinkCausal/inst/app/www/md/help.md
@@ -6,6 +6,9 @@ This is still under development
### Upload data
+
+After clicking the browse button you can select any file available on your computer.
+
thinkCausal can load in .csv, .txt, .xlsx (Excel), .spss (SPSS), .sav (SPSS), .dta (STATA) or .sas (SAS) files.
@@ -114,7 +117,9 @@ In block randomized experiments it is important to always adjust for the variabl
#### Survey weights
-Sometimes our data comes from surveys that are not representative of the population we are inferences about.
+Sometimes our data comes from surveys that are not representative of the population we are inferences about. If your dataset contains survey weights, indicate *yes* for the the Include survey weights input under Advanced Options.
+
+If your dataset does not contrain survey weights leave this input as *no* which is the default option.
@@ -144,7 +149,7 @@ Use the drag-and-drop to include additional variables in the analysis. You may c
You can move all the variables in your dataset by clicking "Move all covariates to include box".
-**After you have selected variables to include in the analysis click on the "Save variable selection & continue" button.
+**After you have selected variables to include in the analysis click on the "Save variable selection & continue" button**.