::: {#id1928 style="" marker="Executive Summary "} [Executive Summary ]{#id1929 style="font-family: TimesNewRomanPS-BoldMT; font-size: 14px;"}
::: {#id1931 style=""} [Global net anthropogenic Greenhouse Gas (GHG) emissions during the last decade (2010-2019) were higher than at any previous time in human history ]{#id1932 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(high confidence)]{#id1934 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. ]{#id1935 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[Since 2010]{#id1936 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[, ]{#id1937 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[GHG emissions have continued to grow reaching 59±6.6 GtCO]{#id1938 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1940 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eq in 2019]{#id1941 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[1]{#id1942 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[, but the average annual growth in the last decade (1.3%, 2010-2019) was lower than in the previous decade (2.1%, 2000-2009) (]{#id1943 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id1945 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Average annual GHG emissions were 56 GtCO]{#id1947 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1948 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id1949 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id1950 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ for the decade 2010-2019 growing by about 9.1 GtCO]{#id1951 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1953 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id1954 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id1955 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ from the previous decade (2000-2009) -- the highest decadal average on record (]{#id1956 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id1958 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.2.2, Table 2.1, Figure 2.5} ]{#id1959 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id1961 style=""} [Emissions growth has varied, but persisted across all groups of greenhouse gases ]{#id1962 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(high confidence)]{#id1963 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. The average annual emission levels of the last decade (2010-2019) were higher than in any previous decade for each group of greenhouse gases (]{#id1965 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id1967 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). In 2019, CO]{#id1968 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1969 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions were 45±5.5 GtCO]{#id1970 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1972 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[,]{#id1973 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1974 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ CH]{#id1975 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[4]{#id1976 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ 11±3.2 GtCO]{#id1977 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1978 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eq, N]{#id1979 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1980 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[O 2.7±1.6 GtCO]{#id1981 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1982 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eq and fluorinated gases (F-gases: HFCs, PFCs, SF]{#id1983 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[6]{#id1985 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[, NF]{#id1986 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[3]{#id1987 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[) 1.4±0.41 GtCO]{#id1988 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1989 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eq. Compared to 1990, the magnitude and speed of these increases differed across gases: CO]{#id1990 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1992 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ from fossil fuel and industry (FFI) grew by 15 GtCO]{#id1993 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id1994 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id1995 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id1996 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ (67%), CH]{#id1997 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[4]{#id1998 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ by 2.4 GtCO]{#id1999 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2001 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id2002 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1 ]{#id2003 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[(29%), F-gases by 0.97 GtCO]{#id2004 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2005 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id2006 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2007 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ (250%), N]{#id2008 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2009 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[O by 0.65 GtCO]{#id2010 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2011 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id2012 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2013 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ (33%). CO]{#id2014 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2015 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from net land use, land-use change and forestry (LULUCF) have shown little long-term change, with large uncertainties preventing the detection of statistically significant trends. F-gases excluded from GHG emissions inventories such as ]{#id2016 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[chlorofluorocarbons]{#id2020 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[ and ]{#id2021 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[hydrochlorofluorocarbons]{#id2022 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[ are about the same size as those included (]{#id2023 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2025 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.2.1, 2.2.2, Table 2.1, Figure 2.2, Figure 2.3, Figure 2.5} ]{#id2026 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2029 style=""} [Globally, GDP per capita and population growth remained the strongest drivers of CO]{#id2030 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2031 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions from fossil fuel combustion in the last decade ]{#id2032 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(robust evidence, high agreement)]{#id2034 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Trends since 1990 continued in the years 2010 to 2019 with GDP per capita and population growth increasing emissions by 2.3% and 1.2% yr]{#id2035 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2038 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[, respectively. This growth outpaced the reduction in the use of energy per unit of GDP (-2% yr]{#id2039 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2041 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[, globally) as well as improvements in the carbon intensity of energy (-0.3%yr]{#id2042 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2043 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[). {2.4.1, Figure 2.19} ]{#id2044 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2047 style=""} [The global COVID-19 pandemic led to a steep drop in CO]{#id2048 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2049 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions from fossil fuel and industry ]{#id2050 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(]{#id2052 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2053 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Global CO]{#id2054 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2055 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[-FFI emissions dropped in 2020 by about 5.8% (5.1% -- 6.3%) or about 2.2 (1.9-2.4) GtCO]{#id2056 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2058 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ compared to 2019. Emissions, however, have rebounded globally by the end of December 2020 (]{#id2059 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium confidence]{#id2061 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.2.2, Figure 2.6} ]{#id2062 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2064 style=""} [Cumulative net CO]{#id2065 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2066 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions of the last decade (2010-2019) are about the same size as the remaining carbon budget for keeping warming to 1.5°C ]{#id2067 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(medium confidence)]{#id2069 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Cumulative net CO]{#id2070 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2071 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions since 1850 are increasing at an accelerating rate. 62% of total cumulative CO]{#id2072 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2074 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from 1850 to 2019 occurred since 1970 (1500±140 GtCO]{#id2075 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2077 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[), about 43% since 1990 (1000±90 GtCO]{#id2078 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2079 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[), ]{#id2080 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[and about 17% since 2010 (410±30 GtCO]{#id2082 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2083 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[). For comparison, the remaining carbon budget for keeping warming to 1.5°C with a 67% (50%) probability is about 400(500)±220 GtCO]{#id2084 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2086 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[. {2.2.2, Figure 2.7; WG1 5.5; WG1 Table 5.8} ]{#id2087 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2090 style=""} [A growing number of countries have achieved GHG emission reductions longer than 10 years -- a few at rates that are broadly consistent with climate change mitigation scenarios that limit ]{#id2091 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"} :::
::: {#id2094 style=""} [FOOTNOTE ]{#id2095 style="font-family: TimesNewRomanPSMT; font-size: 9px;"}[1]{#id2096 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ Emissions of GHGs are weighed by Global Warming Potentials with a 100-year time horizon (GWP100) from the Sixth Assessment Report (Forster et al., 2021). GWP-100 is commonly used in wide parts of the literature on climate change mitigation and is required for reporting emissions under the United Nations ]{#id2097 style="font-family: TimesNewRomanPSMT; font-size: 9px;"}[Framework Convention on Climate Change (UNFCCC). All metrics have limitations and uncertainties. (Cross-Chapter Box 2, Annex II, Part II, Section 8) ]{#id2101 style="font-family: TimesNewRomanPSMT; font-size: 9px;"} :::
::: {#id2125 style=""} :::
::: {#id2171 style=""} [Final Government Distribution ]{#id2172 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2174 style=""} [Chapter 2 ]{#id2175 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2177 style=""} [IPCC AR6 WGIII ]{#id2178 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2241 style=""} [warming to well below 2°C ]{#id2242 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(high confidence)]{#id2243 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. There are about 24 countries that have reduced CO]{#id2244 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2245 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ and GHG emissions for longer than 10 years. Reduction rates in a few countries have reached 4% in some years, in line with rates observed in pathways that ]{#id2246 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[likely]{#id2249 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[ limit warming to 2°C. However, the total reduction in annual GHG emissions of these countries is small (about 3.2 GtCO]{#id2250 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2252 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[eqyr]{#id2253 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2254 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[) compared to global emissions growth observed over the last decades. Complementary evidence suggests that countries have decoupled territorial CO]{#id2255 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2258 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from Gross Domestic Product (GDP), but fewer have decoupled consumption-based emissions from GDP. This decoupling has mostly occurred in countries with high per capita GDP and high per capita CO]{#id2259 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2262 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions. {2.2.3, 2.3.3, Figure 2.11, Table 2.3, Table 2.4} ]{#id2263 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2266 style=""} [Consumption-based CO]{#id2267 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2268 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions in developed countries and the Asia and Developing Pacific region are higher than in other regions ]{#id2269 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(]{#id2271 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2272 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). In developed countries, consumption-based CO]{#id2273 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2275 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions peaked at 15 GtCO]{#id2276 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2277 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ in 2007, declining to about 13 GtCO]{#id2278 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2279 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ in 2018. The Asia and Developing Pacific region, with 52% of current global population, has become a major contributor to consumption-based CO]{#id2280 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2283 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emission growth since 2000 (5.5% yr]{#id2284 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2285 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ for 2000-2018); it exceeded the developed countries region, which accounts for 16% of current global population, as the largest emitter of consumption-based CO]{#id2286 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2289 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[. {2.3.2, Figure 2.14} ]{#id2290 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2292 style=""} [Carbon intensity improvements in the production of traded products have led to a net reduction in CO]{#id2293 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2295 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions embodied in international trade ]{#id2296 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(]{#id2297 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2298 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). A decrease in the carbon intensity of traded products has offset increased trade volumes between 2006 and 2016. Emissions embodied in internationally traded products depend on the composition of the global supply chain across sectors and countries and the respective carbon intensity of production processes (emissions per unit of economic output). {2.3, 2.4} ]{#id2299 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2305 style=""} [Developed countries tend to be net CO]{#id2306 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2307 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emission importers, whereas developing countries tend to be net emission exporters ]{#id2308 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(]{#id2310 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2311 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[).]{#id2312 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[Net CO]{#id2314 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2315 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emission transfers from developing to developed countries via global supply chains have decreased between 2006 and 2016]{#id2316 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[. ]{#id2318 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[Between 2004 and 2011, CO]{#id2320 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2321 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emission embodied in trade between developing countries have more than doubled (from 0.47 to 1.1 Gt) with the centre of trade activities shifting from Europe to Asia. {2.3.4, Figure 2.15} ]{#id2322 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2326 style=""} [Emissions from developing countries have continued to grow, starting from a low base of per capita emissions and with a lower contribution to cumulative emissions than developed countries ]{#id2327 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(robust evidence, high agreement)]{#id2330 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Average 2019 per capita CO]{#id2331 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2332 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[-FFI emissions in three developing regions - Africa (1.2 tCO]{#id2333 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2335 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[/cap), Asia and developing Pacific (4.4 tCO]{#id2336 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2337 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[/cap), and Latin America and Caribbean (2.7 tCO]{#id2338 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2340 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[/cap) - remained less than half that of developed countries (9.5 tCO]{#id2341 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2342 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[/cap) in 2019. CO]{#id2343 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2345 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[-FFI emissions in the three developing regions together grew by 26% between 2010 and 2019, compared to 260% between 1990 and 2010, while in Developed Countries emissions contracted by 9.9% between 2010-2019 and by 9.6% between 1990-2010. Historically, the three developing regions ]{#id2346 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[together contributed 28% to cumulative CO]{#id2350 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2351 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[-FFI emissions between 1850 and 2019, whereas Developed Countries contributed 57% and least developed countries contributed 0.4%. {2.2.3, Figure 2.9, Figure 2.10} ]{#id2352 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2356 style=""} [Globally, GHG emissions continued to rise across all sectors and subsectors; most rapidly in transport and industry (]{#id2357 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[high confidence]{#id2359 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[)]{#id2360 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[. In 2019, 34% (20 GtCO]{#id2361 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2362 style="font-family: TimesNewRomanPSMT; font-size: 3px;"}[eq) of global GHG emissions came from the energy sector, 24% (14 GtCO]{#id2363 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2365 style="font-family: TimesNewRomanPSMT; font-size: 3px;"}[eq) from industry, 22% (13 GtCO]{#id2366 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2367 style="font-family: TimesNewRomanPSMT; font-size: 3px;"}[eq) from AFOLU, 15% (8.7 GtCO]{#id2368 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2370 style="font-family: TimesNewRomanPSMT; font-size: 3px;"}[eq) from transport and 5.6% (3.3 GtCO]{#id2371 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2372 style="font-family: TimesNewRomanPSMT; font-size: 3px;"}[eq) from buildings. Once indirect emissions from energy use are considered, the relative shares of industry and buildings emissions rise to 34% and 17%, ]{#id2373 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[respectively. Average annual GHG emissions growth during 2010-2019 slowed compared to the previous decade in energy supply (from 2.3% to 1.0%) and industry (from 3.4% to 1.4%, direct emissions only), but remained roughly constant at about 2% per year in the transport sector ]{#id2376 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(high ]{#id2379 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"} :::
::: {#id2403 style=""} :::
::: {#id2445 style=""} [Final Government Distribution ]{#id2446 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2448 style=""} [Chapter 2 ]{#id2449 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2451 style=""} [IPCC AR6 WGIII ]{#id2452 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2511 style=""} [confidence)]{#id2512 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Emission growth in AFOLU is more uncertain due to the high share of CO]{#id2513 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2514 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[-LULUCF emissions. {2.4.2, Figure 2.13, Figures 2.16 to 2.21}. ]{#id2515 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2518 style=""} [Average annual growth in GHG emissions from energy supply decreased from 2.3% for 2000--2009 to 1.0% for 2010--2019 ]{#id2519 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(high confidence)]{#id2521 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. This slowing of growth is attributable to further improvements in energy efficiency (annually, 1.9% less energy per unit of GDP was used globally between 2010 and 2019). Reductions in global carbon intensity by -0.2% yr]{#id2522 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2525 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ contributed further - reversing the trend during 2000-2009 (+0.2% yr]{#id2526 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[-1]{#id2528 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[) (]{#id2529 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium confidence]{#id2530 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). These carbon intensity improvement were driven by fuel switching from coal to gas, reduced expansion of coal capacity particularly in Eastern Asia, and the increased use of renewables. {2.2.4, 2.4.2.1, Figure 2.17} ]{#id2531 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2535 style=""} [GHG emissions in the industry, buildings and transport sectors continue to grow, driven by an increase in the global demand for products and services]{#id2536 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[ (]{#id2538 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2539 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). These final demand sectors make up 44% of global GHG emissions, or 66% when the emissions from electricity and heat production are reallocated as indirect emissions to related sectors, mainly to industry and buildings. Emissions are driven by the large rise in demand for basic materials and manufactured products, a global trend of increasing floor space per capita, building energy service use, travel distances, and vehicle size and weight. Between 2010-2019, domestic and international aviation were particularly fast growing at average annual rates of +3.3% and +3.4%. Global energy efficiencies have improved in all three demand sectors, but carbon intensities have not. {2.2.4; Figure 2.18; Figure 2.19; Figure 2.20}. ]{#id2540 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2549 style=""} [Providing access to modern energy services universally would increase global GHG emissions by at most a few percent (]{#id2550 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[high confidence]{#id2552 style="font-family: TimesNewRomanPS-BoldItalicMT; font-size: 11px;"}[). ]{#id2553 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[The additional energy demand needed to support decent living standards]{#id2554 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[3]{#id2556 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ for all is estimated to be well below current average energy consumption (]{#id2557 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium evidence, high agreement]{#id2558 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). More equitable income distributions can reduce carbon emissions, but the nature of this relationship can vary by level of income and development (]{#id2560 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[limited evidence, medium agreement]{#id2562 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.4.3} ]{#id2564 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2566 style=""} [Evidence of rapid energy transitions exists, but only at sub-global scales ]{#id2567 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(medium evidence, medium agreement)]{#id2568 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Emerging evidence since AR5 on past energy transitions identifies a growing number of cases of accelerated technology diffusion at sub-global scales and describes mechanisms by which future energy transitions may occur more quickly than those in the past. Important drivers include technology transfer and cooperation, intentional policy and financial support, and harnessing synergies among technologies within a sustainable energy system perspective ]{#id2570 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(medium evidence, medium agreement)]{#id2575 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. A fast global low-carbon energy transition enabled by finance to facilitate low-carbon technology adoption in developing and particularly in least developed countries can facilitate achieving climate stabilisation targets (]{#id2577 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2580 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[).]{#id2581 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[{2.5.2, Table 2.5} ]{#id2583 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2585 style=""} [Multiple low-carbon technologies have shown rapid progress since AR5 -- in cost, performance, and adoption -- enhancing the feasibility of rapid energy transitions]{#id2586 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[ (]{#id2588 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high ]{#id2589 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[agreement]{#id2591 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). The rapid deployment and cost decrease of modular technologies like solar, wind, and batteries have occurred much faster than anticipated by experts and modelled in previous mitigation scenarios (]{#id2592 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2595 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). The political, economic, social, and technical feasibility of solar energy, wind energy and electricity storage technologies has improved dramatically over the past few years. In contrast, the adoption of nuclear energy and CO]{#id2596 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2599 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ capture and storage in the electricity sector has been slower than the growth rates anticipated in stabilisation scenarios. Emerging evidence since AR5 indicates that small-scale technologies (e.g. solar, batteries) tend to improve faster and be adopted more quickly than large-scale technologies (nuclear, CCS) ]{#id2600 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(medium evidence, medium agreement]{#id2604 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.5.3, 2.5.4, Figures 2.22 and 2.23} ]{#id2606 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2628 style=""} :::
::: {#id2671 style=""} [Final Government Distribution ]{#id2672 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2674 style=""} [Chapter 2 ]{#id2675 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2677 style=""} [IPCC AR6 WGIII ]{#id2678 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2680 style=""} [Robust incentives for investment in innovation, especially incentives reinforced by national policy and international agreements, are central to accelerating low-carbon technological change]{#id2681 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(robust evidence, medium agreement)]{#id2684 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Policies have driven innovation, including instruments for technology push (e.g., scientific training, R&D) and demand pull (e.g., carbon pricing, adoption subsidies), as well as those promoting knowledge flows and especially technology transfer. The magnitude of the scale-up challenge elevates the importance of rapid technology development and adoption. This includes ensuring participation of developing countries in an enhanced global flow of knowledge, skills, experience, equipment, and technology itself requires strong financial, institutional, and capacity building support (]{#id2686 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2693 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.5.4, 2.5, 2.8}]{#id2694 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2697 style=""} [The global wealthiest 10% contribute about 36-45% of global GHG emissions ]{#id2698 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(robust evidence, high agreement)]{#id2699 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. The global 10% wealthiest consumers live in all continents, with two thirds in high-income regions and one third in emerging economies ]{#id2701 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(robust evidence, medium agreement)]{#id2703 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. The lifestyle consumption emissions of the middle income and poorest citizens in emerging economies are between 5-50 times below their counterparts in high-income countries ]{#id2704 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(medium evidence, medium agreement)]{#id2707 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[. Increasing inequality within a country can exacerbate dilemmas of redistribution and social cohesion, and affect the willingness of rich and poor to accept lifestyle changes for mitigation and policies to protect the environment ]{#id2709 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[(medium evidence, medium agreement)]{#id2712 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[ {2.6.1, 2.6.2, Figure 2.25}]{#id2713 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2716 style=""} [Estimates of future CO]{#id2717 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2718 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions from existing fossil fuel infrastructures already exceed remaining cumulative net CO]{#id2719 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[2]{#id2721 style="font-family: TimesNewRomanPS-BoldMT; font-size: 6px;"}[ emissions in pathways limiting warming to 1.5°C with no or limited overshoot ]{#id2722 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[(]{#id2724 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2725 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[)]{#id2726 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[. ]{#id2727 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[Assuming variations in historic patterns of use and decommissioning, estimated future CO]{#id2728 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2730 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from existing fossil fuel infrastructure alone are 660 (460-890) GtCO]{#id2731 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2733 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ and from existing and currently planned infrastructure 850 (600-1100) GtCO]{#id2734 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2735 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[. This compares to overall cumulative net CO]{#id2736 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2738 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions until reaching net zero CO]{#id2739 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2740 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ of 510 (330-710) Gt in pathways that limit warming to 1.5°C with no or limited overshoot, and 880 (640-1160) Gt in pathways that limit ]{#id2741 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[likely]{#id2744 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[ warming to 2°C (]{#id2745 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2746 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). While most future CO]{#id2747 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2748 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from existing and currently planned fossil fuel infrastructure are situated in the power sector, most remaining fossil fuel CO]{#id2749 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2752 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions in pathways that limit likely warming to 2°C and below are from non-electric energy -- most importantly from the industry and transportation sectors (]{#id2753 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2755 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Decommissioning and reduced utilization of existing fossil fuel installations in the power sector as well as cancellation of new installations are required to align future CO]{#id2756 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[2]{#id2759 style="font-family: TimesNewRomanPSMT; font-size: 6px;"}[ emissions from the power sector with projections in these pathways (]{#id2760 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[high confidence]{#id2762 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.7.2, 2.7.3, Figure 2.26, Table 2.6, Table 2.7} ]{#id2763 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2765 style=""} [A broad range of climate policies, including instruments like carbon pricing, play an increasing role in GHG emissions reductions]{#id2766 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[. The literature is in broad agreement, but the magnitude of the reduction rate varies by the data and methodology used, country, and sector (]{#id2768 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2770 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Countries with a lower carbon pricing gap (higher carbon price) tend to be less carbon intensive (]{#id2772 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium confidence]{#id2774 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.8.2, 2.8.3} ]{#id2775 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2777 style=""} [Climate-related policies have also contributed to decreasing GHG emissions.]{#id2778 style="font-family: TimesNewRomanPS-BoldMT; font-size: 11px;"}[ Policies such as taxes and subsidies for clean and public transportation, and renewable policies have reduced GHG emissions in some contexts (]{#id2779 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[robust evidence, high agreement]{#id2782 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Pollution control policies and legislations that go beyond end-of-pipe controls have also had climate co-benefits, particularly if complementarities with GHG emissions are considered in policy design (]{#id2783 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium evidence, medium agreement]{#id2786 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). Policies on agriculture, forestry and other land use (AFOLU) and AFOLU sector-related policies such as afforestation policies can have important impacts on GHG emissions (]{#id2787 style="font-family: TimesNewRomanPSMT; font-size: 11px;"}[medium evidence, medium agreement]{#id2790 style="font-family: TimesNewRomanPS-ItalicMT; font-size: 11px;"}[). {2.8.4} ]{#id2792 style="font-family: TimesNewRomanPSMT; font-size: 11px;"} :::
::: {#id2861 style=""} :::
::: {#id2904 style=""} [Page 12]{#id2905} ::: :::