forked from xiaoyu2er/leetcode-js
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path416-Partition-Equal-Subset-Sum.js
58 lines (48 loc) · 1.51 KB
/
416-Partition-Equal-Subset-Sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* https://leetcode.com/problems/partition-equal-subset-sum/description/
* Difficulty:Medium
*
* Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
* Note:
* Each of the array element will not exceed 100.
* The array size will not exceed 200.
* Example 1:
* Input: [1, 5, 11, 5]
* Output: true
* Explanation: The array can be partitioned as [1, 5, 5] and [11].
* Example 2:
* Input: [1, 2, 3, 5]
* Output: false
* Explanation: The array cannot be partitioned into equal sum subsets.
*/
/**
*
* 01背包问题
* @param {number[]} nums
* @return {boolean}
*/
var canPartition = function (nums) {
var sum = nums.reduce((a, b) => a + b, 0);
if (sum % 2) return false;
sum = sum / 2;
var n = nums.length;
var dp = [];
while (dp.push(new Array(sum + 1).fill(0)) < n + 1) ;
for (var i = 0; i < n + 1; i++) {
dp[i][0] = 1;
}
for (var i = 1; i < n + 1; i++) {
for (var j = 1; j < sum + 1; j++) {
if (dp[i - 1][j]) dp[i][j] = 1;
if (j >= nums[i - 1] && dp[i - 1][j - nums[i - 1]]) dp[i][j] = 1;
}
}
// console.log(dp);
return !!dp[n][sum];
};
console.log(canPartition([1, 5]));
console.log(canPartition([1, 5, 11, 5]));
// console.log(canPartition([1, 5, 11, 5, 1, 1]));
// console.log(canPartition([1, 5, 11, 5, 2]));
// console.log(canPartition([1, 5, 11, 5]));
// console.log(canPartition([1, 2, 3, 5]));