forked from medgift/PROCESS_L1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cca_core.py
366 lines (292 loc) · 14.7 KB
/
cca_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The core code for applying Canonical Correlation Analysis to deep networks.
This module contains the core functions to apply canonical correlation analysis
to deep neural networks. The main function is get_cca_similarity, which takes in
two sets of activations, typically the neurons in two layers and their outputs
on all of the datapoints D = [d_1,...,d_m] that have been passed through.
Inputs have shape (num_neurons1, m), (num_neurons2, m). This can be directly
applied used on fully connected networks. For convolutional layers, the 3d block
of neurons can either be flattened entirely, along channels, or alternatively,
the dft_ccas (Discrete Fourier Transform) module can be used.
See https://arxiv.org/abs/1706.05806 for full details.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
num_cca_trials = 5
epsilon = 1e-6
def positivedef_matrix_sqrt(array):
"""Stable method for computing matrix square roots, supports complex matrices.
Args:
array: A numpy 2d array, can be complex valued that is a positive
definite symmetric (or hermitian) matrix
Returns:
sqrtarray: The matrix square root of array
"""
w, v = np.linalg.eigh(array)
# A - np.dot(v, np.dot(np.diag(w), v.T))
wsqrt = np.sqrt(w)
sqrtarray = np.dot(v, np.dot(np.diag(wsqrt), np.conj(v).T))
return sqrtarray
def remove_small(sigma_xx, sigma_xy, sigma_yx, sigma_yy, threshold=1e-6):
"""Takes covariance between X, Y, and removes values of small magnitude.
Args:
sigma_xx: 2d numpy array, variance matrix for x
sigma_xy: 2d numpy array, crossvariance matrix for x,y
sigma_yx: 2d numpy array, crossvariance matrixy for x,y,
(conjugate) transpose of sigma_xy
sigma_yy: 2d numpy array, variance matrix for y
threshold: cutoff value for norm below which directions are thrown
away
Returns:
sigma_xx_crop: 2d array with low x norm directions removed
sigma_xy_crop: 2d array with low x and y norm directions removed
sigma_yx_crop: 2d array with low x and y norm directiosn removed
sigma_yy_crop: 2d array with low y norm directions removed
x_idxs: indexes of sigma_xx that were removed
y_idxs: indexes of sigma_yy that were removed
"""
x_diag = np.abs(np.diagonal(sigma_xx))
y_diag = np.abs(np.diagonal(sigma_yy))
x_idxs = (x_diag >= threshold)
y_idxs = (y_diag >= threshold)
sigma_xx_crop = sigma_xx[x_idxs][:, x_idxs]
sigma_xy_crop = sigma_xy[x_idxs][:, y_idxs]
sigma_yx_crop = sigma_yx[y_idxs][:, x_idxs]
sigma_yy_crop = sigma_yy[y_idxs][:, y_idxs]
return (sigma_xx_crop, sigma_xy_crop, sigma_yx_crop, sigma_yy_crop, x_idxs,
y_idxs)
def compute_ccas(sigma_xx, sigma_xy, sigma_yx, sigma_yy, verbose=True):
"""Main cca computation function, takes in variances and crossvariances.
This function takes in the covariances and cross covariances of X, Y,
preprocesses them (removing small magnitudes) and outputs the raw results of
the cca computation, including cca directions in a rotated space, and the
cca correlation coefficient values.
Args:
sigma_xx: 2d numpy array, (num_neurons_x, num_neurons_x)
variance matrix for x
sigma_xy: 2d numpy array, (num_neurons_x, num_neurons_y)
crossvariance matrix for x,y
sigma_yx: 2d numpy array, (num_neurons_y, num_neurons_x)
crossvariance matrix for x,y (conj) transpose of sigma_xy
sigma_yy: 2d numpy array, (num_neurons_y, num_neurons_y)
variance matrix for y
verbose: boolean on whether to print intermediate outputs
Returns:
[ux, sx, vx]: [numpy 2d array, numpy 1d array, numpy 2d array]
ux and vx are (conj) transposes of each other, being
the canonical directions in the X subspace.
sx is the set of canonical correlation coefficients-
how well corresponding directions in vx, Vy correlate
with each other.
[uy, sy, vy]: Same as above, but for Y space
invsqrt_xx: Inverse square root of sigma_xx to transform canonical
directions back to original space
invsqrt_yy: Same as above but for sigma_yy
x_idxs: The indexes of the input sigma_xx that were pruned
by remove_small
y_idxs: Same as above but for sigma_yy
"""
(sigma_xx, sigma_xy, sigma_yx, sigma_yy, x_idxs, y_idxs) = remove_small(
sigma_xx, sigma_xy, sigma_yx, sigma_yy)
numx = sigma_xx.shape[0]
numy = sigma_yy.shape[0]
if numx == 0 or numy == 0:
return ([0, 0, 0], [0, 0, 0], np.zeros_like(sigma_xx),
np.zeros_like(sigma_yy), x_idxs, y_idxs)
if verbose:
print("adding eps to diagonal and taking inverse")
sigma_xx +=epsilon * np.eye(numx)
sigma_yy +=epsilon * np.eye(numy)
inv_xx = np.linalg.pinv(sigma_xx)
inv_yy = np.linalg.pinv(sigma_yy)
if verbose:
print("taking square root")
invsqrt_xx = positivedef_matrix_sqrt(inv_xx)
invsqrt_yy = positivedef_matrix_sqrt(inv_yy)
if verbose:
print("dot products...")
arr_x = np.dot(sigma_yx, invsqrt_xx)
arr_x = np.dot(inv_yy, arr_x)
arr_x = np.dot(invsqrt_xx, np.dot(sigma_xy, arr_x))
arr_y = np.dot(sigma_xy, invsqrt_yy)
arr_y = np.dot(inv_xx, arr_y)
arr_y = np.dot(invsqrt_yy, np.dot(sigma_yx, arr_y))
if verbose:
print("trying to take final svd")
arr_x_stable = arr_x + epsilon * np.eye(arr_x.shape[0])
arr_y_stable = arr_y + epsilon * np.eye(arr_y.shape[0])
ux, sx, vx = np.linalg.svd(arr_x_stable)
uy, sy, vy = np.linalg.svd(arr_y_stable)
sx = np.sqrt(np.abs(sx))
sy = np.sqrt(np.abs(sy))
if verbose:
print("computed everything!")
return [ux, sx, vx], [uy, sy, vy], invsqrt_xx, invsqrt_yy, x_idxs, y_idxs
def sum_threshold(array, threshold):
"""Computes threshold index of decreasing nonnegative array by summing.
This function takes in a decreasing array nonnegative floats, and a
threshold between 0 and 1. It returns the index i at which the sum of the
array up to i is threshold*total mass of the array.
Args:
array: a 1d numpy array of decreasing, nonnegative floats
threshold: a number between 0 and 1
Returns:
i: index at which np.sum(array[:i]) >= threshold
"""
assert (threshold >= 0) and (threshold <= 1), "print incorrect threshold"
for i in xrange(len(array)):
if np.sum(array[:i]) / np.sum(array) >= threshold:
return i
def create_zero_dict(compute_dirns, dimension):
"""Outputs a zero dict when neuron activation norms too small.
This function creates a return_dict with appropriately shaped zero entries
when all neuron activations are very small.
Args:
compute_dirns: boolean, whether to have zero vectors for directions
dimension: int, defines shape of directions
Returns:
return_dict: a dict of appropriately shaped zero entries
"""
return_dict = {}
return_dict["mean"] = (np.asarray(0), np.asarray(0))
return_dict["sum"] = (np.asarray(0), np.asarray(0))
return_dict["cca_coef1"] = np.asarray(0)
return_dict["cca_coef2"] = np.asarray(0)
return_dict["idx1"] = 0
return_dict["idx2"] = 0
if compute_dirns:
return_dict["cca_dirns1"] = np.zeros((1, dimension))
return_dict["cca_dirns2"] = np.zeros((1, dimension))
return return_dict
def get_cca_similarity(acts1, acts2, threshold=0.98, compute_dirns=True,
verbose=True):
"""The main function for computing cca similarities.
This function computes the cca similarity between two sets of activations,
returning a dict with the cca coefficients, a few statistics of the cca
coefficients, and (optionally) the actual directions.
Args:
acts1: (num_neurons1, data_points) a 2d numpy array of neurons by
datapoints where entry (i,j) is the output of neuron i on
datapoint j.
acts2: (num_neurons2, data_points) same as above, but (potentially)
for a different set of neurons. Note that acts1 and acts2
can have different numbers of neurons, but must agree on the
number of datapoints
threshold: float between 0, 1 used to get rid of trailing zeros in
the cca correlation coefficients to output more accurate
summary statistics of correlations.
compute_dirns: boolean value determining whether actual cca
directions are computed. (For very large neurons and
datasets, may be better to compute these on the fly
instead of store in memory.)
verbose: Boolean, whether info about intermediate outputs printed
Returns:
return_dict: A dictionary with outputs from the cca computations.
Contains neuron coefficients (combinations of neurons
that correspond to cca directions), the cca correlation
coefficients (how well aligned directions correlate),
x and y idxs (for computing cca directions on the fly
if compute_dirns=False), and summary statistics. If
compute_dirns=True, the cca directions are also
computed.
"""
# assert dimensionality equal
assert acts1.shape[1] == acts2.shape[1], "dimensions don't match"
# check that acts1, acts2 are transposition
#assert acts1.shape[0] < acts1.shape[1], ("input must be number of neurons"
# "by datapoints")
return_dict = {}
# compute covariance with numpy function for extra stability
numx = acts1.shape[0]
covariance = np.cov(acts1, acts2)
sigmaxx = covariance[:numx, :numx]
sigmaxy = covariance[:numx, numx:]
sigmayx = covariance[numx:, :numx]
sigmayy = covariance[numx:, numx:]
# rescale covariance to make cca computation more stable
xmax = np.max(np.abs(sigmaxx))
ymax = np.max(np.abs(sigmayy))
sigmaxx /= xmax
sigmayy /= ymax
sigmaxy /= np.sqrt(xmax * ymax)
sigmayx /= np.sqrt(xmax * ymax)
([_, sx, vx], [_, sy, vy], invsqrt_xx, invsqrt_yy, x_idxs,
y_idxs) = compute_ccas(sigmaxx, sigmaxy, sigmayx, sigmayy,
verbose)
# if x_idxs or y_idxs is all false, return_dict has zero entries
if (not np.any(x_idxs)) or (not np.any(y_idxs)):
return create_zero_dict(compute_dirns, acts1.shape[1])
if compute_dirns:
# orthonormal directions that are CCA directions
cca_dirns1 = np.dot(vx, np.dot(invsqrt_xx, acts1[x_idxs]))
cca_dirns2 = np.dot(vy, np.dot(invsqrt_yy, acts2[y_idxs]))
# get rid of trailing zeros in the cca coefficients
idx1 = sum_threshold(sx, threshold)
idx2 = sum_threshold(sy, threshold)
return_dict["neuron_coeffs1"] = np.dot(vx, invsqrt_xx)
return_dict["neuron_coeffs2"] = np.dot(vy, invsqrt_yy)
return_dict["cca_coef1"] = sx
return_dict["cca_coef2"] = sy
return_dict["x_idxs"] = x_idxs
return_dict["y_idxs"] = y_idxs
# summary statistics
return_dict["mean"] = (np.mean(sx[:idx1]), np.mean(sy[:idx2]))
return_dict["sum"] = (np.sum(sx), np.sum(sy))
if compute_dirns:
return_dict["cca_dirns1"] = cca_dirns1
return_dict["cca_dirns2"] = cca_dirns2
return return_dict
def robust_cca_similarity(acts1, acts2, threshold=0.98, compute_dirns=True):
"""Calls get_cca_similarity multiple times while adding noise.
This function is very similar to get_cca_similarity, and can be used if
get_cca_similarity doesn't converge for some pair of inputs. This function
adds some noise to the activations to help convergence.
Args:
acts1: (num_neurons1, data_points) a 2d numpy array of neurons by
datapoints where entry (i,j) is the output of neuron i on
datapoint j.
acts2: (num_neurons2, data_points) same as above, but (potentially)
for a different set of neurons. Note that acts1 and acts2
can have different numbers of neurons, but must agree on the
number of datapoints
threshold: float between 0, 1 used to get rid of trailing zeros in
the cca correlation coefficients to output more accurate
summary statistics of correlations.
compute_dirns: boolean value determining whether actual cca
directions are computed. (For very large neurons and
datasets, may be better to compute these on the fly
instead of store in memory.)
Returns:
return_dict: A dictionary with outputs from the cca computations.
Contains neuron coefficients (combinations of neurons
that correspond to cca directions), the cca correlation
coefficients (how well aligned directions correlate),
x and y idxs (for computing cca directions on the fly
if compute_dirns=False), and summary statistics. If
compute_dirns=True, the cca directions are also
computed.
"""
for trial in xrange(num_cca_trials):
try:
return_dict = get_cca_similarity(acts1, acts2, threshold, compute_dirns)
except np.LinAlgError:
acts1 = acts1 * 1e-1 + np.random.normal(size=acts1.shape) * epsilon
acts2 = acts2 * 1e-1 + np.random.normal(size=acts1.shape) * epsilon
if trial + 1 == num_cca_trials:
raise
return return_dict