-
Notifications
You must be signed in to change notification settings - Fork 0
/
Emissions_NewEnglandPDF.Rmd
1878 lines (1729 loc) · 95.9 KB
/
Emissions_NewEnglandPDF.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Transportation Emissions in New England"
author: "Marcos Luna"
date: "1/22/2020"
output:
bookdown::pdf_document2:
toc: true
toc_depth: 3
number_sections: true
fig_caption: yes
includes:
in_header: my_header.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Analysis of transportation-related emissions in New England
This is an analysis of transportation-related emissions and related externalities in New England.
## Analysis of PM~2.5~ in New England
This is an analysis of PM~2.5~ across New England and its relationship to populations of concern. The analysis is based on data from the EPA's EJSCREEN. EJSCREEN data provides PM~2.5~ annual concentrations at the Census Block Group level for the years 2011 tp 2016 (as of December 2019).
PM~2.5~ levels vary significantly across New England, with highest concentrations in southwest Connecticut, from Stamford to Hartford, and also from Providence, Rhode Island, to the Boston metro region, and from Portland, Maine along the I-95 corridor to Bangor (see Figure \@ref(fig:mapPM25NE) below).
```{r mapPM25NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of 2016 annual PM2.5 concentrations across New England at Census Block Group level.", strip.white=TRUE}
library(tidyverse)
library(sf)
library(tmap)
library(tmaptools)
library(maptools)
# library(raster)
library(rgdal)
library(RColorBrewer)
library(sp)
library(CGPfunctions) # for slope graphs
library(ggcorrplot)
library(spdep)
# ne_blkgrp_sf %>%
# as.data.frame() %>%
# transmute(`PM2.5 2011` = pm_15, `PM2.5 2016` = PM25_19) %>%
# summary()
# Load data
load("DATA/ne_layers.rds")
# Map of PM2.5 across New England
tm_shape(ne_blkgrp_sf, unit = "mi") +
tm_fill("PM25_19", style = "quantile",
title = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=2)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Annual PM2.5 \nConcentrations\n2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
PM~2.5~ concentrations exhibit spatial clustering of both hot spots (i.e. geographic clusters of high values) and cold spots (i.e. geographic clusters of lower values). The map below (Figure \@ref(fig:hotspotPM25NE)) shows statistically significant PM~2.5~ hot spots.
```{r hotspotPM25NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Hot spot map of 2016 annual PM2.5 concentrations at Census Block Group level."}
# Get rid of empty geometries and NAs, and convert to spdf
empty_geo <- st_is_empty(ne_blkgrp_sf)
ne_blkgrp_sp_DemoEJ <- ne_blkgrp_sf[!empty_geo,] %>%
dplyr::select(GEOID,PM25_19) %>%
# st_transform(., crs = 2163) %>% # convert to US National Atlas Equal Area
na.omit() %>%
as_Spatial()
# Calculate Queen's case neighbors
neighborsQC <- poly2nb(ne_blkgrp_sp_DemoEJ, queen = TRUE)
# Compute neighbor weights
# spdep::set.ZeroPolicyOption(TRUE)
listw <- nb2listw(neighborsQC, style = "W", zero.policy = TRUE)
# compute Getis-Ord Gi statistic
local_g <- localG(ne_blkgrp_sp_DemoEJ$PM25_19, listw)
local_g <- cbind(ne_blkgrp_sp_DemoEJ, as.matrix(local_g))
names(local_g)[3] <- "gstat"
# map the results
tm_shape(local_g, unit = "mi",) +
tm_fill("gstat",
palette = "-RdBu",
style = "pretty",
title = expression(paste("Getis-Ord ", G[i]^"*")),
showNA = FALSE,
midpoint = NA,
labels = c("Significant Clusters","of Low Values","Significant Clusters","of High Values")) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Hot Spot Map of \nPM2.5 for\nNew England", frame = FALSE, main.title.size = 0.6,
legend.position = c(.8,.2),
legend.title.size = 0.7)
```
There is a statistically significant hot spot of PM~2.5~ around Stamford, Connecticut. Warm clusters encompass southwestern Connecticut to Hartford, from Providence, Rhode Island ot Boston, and Augusta to Bangor, Maine along the I-95 corridor.
These PM~2.5~ levels vary significantly by state (see Figure \@ref(fig:boxplotPM25NE) below). Connecticut stands out with the highest median PM~2.5~ concentrations among the New England states, while Vermont has the lowest overall concentrations. The differences in concentrations between the states are all statistically significant.
```{r boxplotPM25NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Boxplot of 2016 annual PM2.5 concentrations by state at Census Block Group level."}
# boxplot of PM2.5 by state for 2016
ne_blkgrp_sf %>%
as.data.frame() %>%
ggplot(aes(x = STATE, y = PM25_19, fill = STATE)) +
geom_boxplot(notch = TRUE) +
ggtitle(expression(atop(paste(PM[2.5], " Annual Concentration by New England state,"), "2016"))) +
theme_minimal() +
theme(legend.position = "none", axis.text=element_text(size=8)) +
xlab(NULL) +
ylab(expression(paste(PM[2.5]," (", mu, "g/", m^3, ")", sep = ""))) +
coord_flip()
# # boxplot of PM2.5 by state for 2011
# ne_blkgrp_sf %>%
# as.data.frame() %>%
# ggplot(aes(x = STATE, y = pm_15, fill = STATE)) +
# geom_boxplot(notch = TRUE) +
# ggtitle(expression(paste(PM[2.5], " Annual Concentration by New England state, 2011", sep = ""))) +
# theme_minimal() +
# theme(legend.position = "none") + xlab(NULL) +
# ylab(expression(paste(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")))
```
Since 2011, PM~2.5~ levels have declined across the region, on average by `r {round(mean(ne_blkgrp_sf$PM25_pctChange, na.rm = TRUE),1)}`%. Unsurprisingly, this decline has not been uniform (see Figure \@ref(fig:mapPM25NEchange) below). The greatest declines, up to 43%, have been in the northern half of Vermont and the region between Boston and Portsmouth.
```{r mapPM25NEchange, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of percent change in annual PM2.5 concentrations across New England between 2011 and 2016 at Census Block Group level."}
# Map of PM2.5 change across New England
tm_shape(ne_blkgrp_sf, unit = "mi") +
tm_fill("PM25_pctChange", palette = "Greens",
style = "quantile",
title = "% Change",
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Change in annual PM2.5 \nConcentrations \n2011-2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
Averaged across the states, the differences in these declines are also apparent. Figure \@ref(fig:slopegraphPM25NE) below compares the average annual PM~2.5~ concentrations by state and for the region between 2011 and 2016. The region and the states all showed significant declines since 2011, although note that concentrations in Connecticut have remained consistently well above the rest of the region.
```{r slopegraphPM25NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Slope graph of annual PM2.5 concentrations for 2011 and 2016 for New England and states."}
# Slope graph of PM2.5 by state and region between 2011 and 2016
# Create df of 2019 actual values
PM19wSTAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(PM25Mean = mean(PM25_19, na.rm = TRUE),
PM25wMean = weighted.mean(x = PM25_19,
w = totalpopE, na.rm = TRUE)) %>%
mutate(Year = 2016)
# Create df of 2015 values
PM15wSTAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(PM25Mean = mean(pm_15, na.rm = TRUE),
PM25wMean = weighted.mean(x = pm_15,
w = pop_15, na.rm = TRUE)) %>%
mutate(Year = 2011)
# Create regional average benchmark
pm15NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(PM25Mean = mean(pm_15, na.rm = TRUE),
PM25wMean = weighted.mean(x = pm_15,
w = pop_15, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
PM25Mean = PM25Mean,
PM25wMean = PM25wMean,
Year = 2011)
pm19NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(PM25Mean = mean(PM25_19, na.rm = TRUE),
PM25wMean = weighted.mean(x = PM25_19,
w = totalpopE, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
PM25Mean = PM25Mean,
PM25wMean = PM25wMean,
Year = 2016)
#rbind tables
PM11_16wSTAvg_actual <- bind_rows(PM15wSTAvgs_actual,
PM19wSTAvgs_actual,
pm15NEavg,pm19NEavg) %>%
mutate(Year = as.factor(Year),
PM25Mean = round(PM25wMean,2),
PM25wMean = round(PM25wMean,2))
# make slope graph
newggslopegraph(dataframe = PM11_16wSTAvg_actual,
Times = Year,
Measurement = PM25Mean,
Grouping = STATE,
Title = expression(paste("Annual Average ", PM[2.5], " Concentrations")),
SubTitle = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
Caption = NULL,
LineColor = c("NEW ENGLAND" = "#000000",
"Connecticut" = "#E69F00",
"Massachusetts" = "#56B4E9",
"Rhode Island" = "#009E73",
"New Hampshire" = "#F0E442",
"Vermont" = "#0072B2",
"Maine" = "#D55E00"),
LineThickness = 1,
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
### PM~2.5~ in New England and Populations of Concern
In addition to variations in the general geography of PM~2.5~ concentrations, exposure to these pollutants also varies demographically. Figure \@ref(fig:barplotPM25PopAvgNE) below shows population-weighted exposures for populations of concern relative to average PM~2.5~ concentrations for the region. For example, minorities in New England are exposed to PM~2.5~ concentrations that are more than 5% above concentrations for the region as a whole. Similarly, linguistically isolated households are exposed to concentrations 4.9% above the regional average. By contrast, persons over age 64 are, on average, exposed to concentrations of PM~2.5~ at or below the regional average.
```{r barplotPM25PopAvgNE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Graph of population-weighted average exposures to PM2.5 for populations of concern in New England relative to the regional average."}
# Pop Weighted avg of PM2.5 for all Groups in New England relative to NE average
ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(totalpopE,
nhwhitepopE,
minorityE,
nhblackpopE,
nhamerindpopE,
nhasianpopE,
nhnativhpopE,
nhotherpopE,
nh2morepopE,
hisppopE,
povknownE,
num2povE,
eng_hhE,
eng_limitE,
age25upE,
lthsE,
allAgesE,
under5E,
over64E,
PM25_19) %>%
gather(key = Group, value = Pop, totalpopE:over64E) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = PM25_19, w = Pop, na.rm = TRUE),
PM25Mean = mean(PM25_19, na.rm = TRUE)) %>%
spread(key = Group, value = PM25wMean) %>%
transmute(Minority = (minorityE/PM25Mean - 1)*100,
#Minority_NHW = (minorityE/nhwhitepopE - 1)*100,
`Lang Isol` = (eng_limitE/PM25Mean - 1)*100,
`Low Income` = (num2povE/PM25Mean - 1)*100,
`No HS` = (lthsE/PM25Mean - 1)*100,
`Under 5` = (under5E/PM25Mean - 1)*100,
`Over 64` = (over64E/PM25Mean - 1)*100) %>%
gather(key = Group, value = Pct) %>%
ggplot(aes(x = reorder(Group, -Pct), y = Pct, fill = Group)) +
geom_bar(stat = "identity", position = "identity") +
theme_minimal() +
labs(x = "", y = "", title = expression(atop(paste("Population-Weighted ", PM[2.5], " Exposure"), "(relative to New England average)"))) +
theme(legend.position = 'none') +
geom_text(aes(x = Group, y = Pct + 0.2 * sign(Pct),
label = paste0(round(Pct,2),"%")),
hjust = 0.5, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = 0)
```
Like the region as a whole, these populations have also experienced a decline in exposure since 2011. The comparison between exposure for these groups since 2011 is displayed below in Figure \@ref(fig:slopegraphPM25PopAvgNE). Note however that except for persons over age 64 and low income persons, all other populations of concern continue to experience exposures greater than the regional average, with minorities leading on this measure.
```{r slopegraphPM25PopAvgNE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Slope graph of annual PM2.5 concentrations by population of concern for 2011 and 2016."}
# Pop Weighted avg of PM2.5 EXPOSURE CHANGE 2011 - 2016 for all Groups in New England relative to NE average.
# Create df of 2019 actual values
PM19wAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(minorityE,
num2povE,
eng_limitE,
lthsE,
under5E,
over64E,
PM25_19) %>%
gather(key = Group, value = Pop, minorityE:over64E) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = PM25_19,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "minorityE" ~ "Minority",
Group == "eng_limitE" ~ "Lang Isol",
Group == "num2povE" ~ "Low Income",
Group == "lthsE" ~ "No HS Dip",
Group == "under5E" ~ "Under 5",
Group == "over64E" ~ "Over 64")) %>%
mutate(Year = 2016)
# Create df of 2015 values
PM15wAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(mins_15,
lowinc_15,
lingiso_15,
lths_15,
under5_15,
over64_15,
pm_15) %>%
gather(key = Group, value = Pop, mins_15:over64_15) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = pm_15,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "mins_15" ~ "Minority",
Group == "lingiso_15" ~ "Lang Isol",
Group == "lowinc_15" ~ "Low Income",
Group == "lths_15" ~ "No HS Dip",
Group == "under5_15" ~ "Under 5",
Group == "over64_15" ~ "Over 64")) %>%
mutate(Year = 2011)
# Create regional average benchmark
pm15NEavg <- mean(ne_blkgrp_sf$pm_15, na.rm = TRUE)
pm19NEavg <- mean(ne_blkgrp_sf$PM25_19, na.rm = TRUE)
pmRegionalAvg_actual <- data.frame(
Group = c("REGIONAL AVG", "REGIONAL AVG"),
PM25wMean = c(pm15NEavg,pm19NEavg),
Year = c(2011,2016)
)
#rbind tables
PM11_16wAvg_actual <- bind_rows(PM15wAvgs_actual,
PM19wAvgs_actual,
pmRegionalAvg_actual) %>%
mutate(Year = as.factor(Year),
PM25wMean = round(PM25wMean,1))
# make slope graph
newggslopegraph(dataframe = PM11_16wAvg_actual,
Times = Year,
Measurement = PM25wMean,
Grouping = Group,
Title = "Population-Weighted PM2.5 Exposure",
SubTitle = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
Caption = NULL,
LineColor = c("REGIONAL AVG" = "#000000",
"Lang Isol" = "#E69F00",
"Minority" = "#56B4E9",
"No HS" = "#009E73",
"Poverty" = "#F0E442",
"Under 5" = "#0072B2",
"Over 64" = "#D55E00"),
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
Indeed, there is a moderate but statistically significant positive relationship between the proportion of minority residents or language-isolated households and the concentration of PM~2.5~ (see Figure \@ref(fig:cormatrixPM25PopAvg) below.).
```{r cormatrixPM25PopAvg, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Spearman's correlation matrix of annual PM2.5 concentrations and the proportions of populations of concern by Census Block Group."}
# Create a correlation matrix of PM25 and populations of concern
corrPM25 <- ne_blkgrp_sf %>%
as.data.frame() %>%
dplyr::transmute(PM25 = PM25_19,
Minority = minority_pctE,
`Low Income` = pct2povE,
`Lang Isol` = eng_limit_pctE,
`No HS Dip` = pct_lthsE,
`Under 5` = pct_under5E,
`Over 64` = pct_over64E) %>%
drop_na() %>%
cor(method = "spearman")
# corrPM25
ggcorrplot(corrPM25, hc.order = TRUE, type = "lower", lab = TRUE,
title = "PM2.5 Correlation Matrix for New England",
legend.title = "Spearman's \nCorrelation\nCoefficient")
```
## Analysis of Ozone (O~3~) in New England
Ozone (O~3~) levels vary significantly across New England, with highest concentrations in southwest Connecticut, and declining toward the north and east (see Figure \@ref(fig:mapO3NE) below).
```{r mapO3NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of 2016 Ozone summer seasonal average of daily maximum 8-hour concentration in air in parts per billion across New England at Census Block Group level."}
# Map of O3 across New England
tm_shape(ne_blkgrp_sf, unit = "mi") +
tm_fill("OZONE_19", style = "quantile",
title = expression(paste
(O[3]," (ppb)", sep = "")),
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Summer Ozone \nConcentrations\n2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
Ozone (O~3~) concentrations exhibit spatial clustering of both hot spots (i.e. geographic clusters of high values) and cold spots (i.e. geographic clusters of lower values). The map below (Figure \@ref(fig:hotspotO3NE))shows statistically significant Ozone (O~3~) hot spots.
```{r hotspotO3NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Hot spot map of 2016 Ozone concentrations at Census Block Group level."}
# Get rid of empty geometries and NAs, and convert to spdf
empty_geo <- st_is_empty(ne_blkgrp_sf)
ne_blkgrp_sp_DemoEJ <- ne_blkgrp_sf[!empty_geo,] %>%
dplyr::select(GEOID,OZONE_19) %>%
# st_transform(., crs = 2163) %>% # convert to US National Atlas Equal Area
na.omit() %>%
as_Spatial()
# Calculate Queen's case neighbors
neighborsQC <- poly2nb(ne_blkgrp_sp_DemoEJ, queen = TRUE)
# Compute neighbor weights
# spdep::set.ZeroPolicyOption(TRUE)
listw <- nb2listw(neighborsQC, style = "W", zero.policy = TRUE)
# compute Getis-Ord Gi statistic
local_g <- localG(ne_blkgrp_sp_DemoEJ$OZONE_19, listw)
local_g <- cbind(ne_blkgrp_sp_DemoEJ, as.matrix(local_g))
names(local_g)[3] <- "gstat"
# map the results
tm_shape(local_g, unit = "mi",) +
tm_fill("gstat",
palette = "-RdBu",
style = "pretty",
title = expression(paste("Getis-Ord ", G[i]^"*")),
showNA = FALSE,
midpoint = NA,
labels = c("Significant Clusters","of Low Values", "No Significant Clustering", "Significant Clusters","of High Values")) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Hot Spot Map of \nOzone for\nNew England", frame = FALSE, main.title.size = 0.6,
legend.position = c(.8,.2),
legend.title.size = 0.7)
```
There are statistically significant hot spots of Ozone (O~3~) primarily around Stamford, Connecticut. A warm cluster encompasses of all Connecticut, Rhode Island, and the southwestern half of Massachusetts.
These Ozone (O~3~) levels vary significantly by state (see Figure \@ref(fig:boxplotO3NE) below). Connecticut stands out with the highest median summer seasonal average Ozone (O~3~) concentrations among the New England states, while Maine has the lowest overall concentrations. The differences in median concentrations between the states are all statistically significant.
```{r boxplotO3NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Boxplot of 2016 Ozone summer seasonal average of daily maximum 8-hour concentrations in air in parts per billion by state at Census Block Group level."}
# boxplot of PM2.5 by state for 2016
ne_blkgrp_sf %>%
as.data.frame() %>%
ggplot(aes(x = STATE, y = OZONE_19, fill = STATE)) +
geom_boxplot(notch = TRUE) +
ggtitle(expression(atop(paste("Ozone (", O[3], ") Summer Concentration"), "by New England state, 2016"))) +
theme_minimal() +
theme(legend.position = "none", axis.text=element_text(size=8)) +
xlab(NULL) +
ylab(expression(paste(O[3]," (ppb)", sep = ""))) +
coord_flip()
```
Since 2011, Ozone (O~3~) levels have increased slightly across the region, on average by `r {round(mean(ne_blkgrp_sf$OZONE_pctChange, na.rm = TRUE),1)}`%. These have changes not been uniform (see Figure \@ref(fig:mapO3NEchange) below). The greatest declines, up to 10.5%, have been in the northern half of Maine and Vermont, northeastern Vermont, southwestern Massachusetts, and southern Rhode Island. By contrast, increases in summer ozone concentrations of up to 8.1% appear in southwestern Connecticut, from Stamford to Hartford and north into western Massachusetts around Springfield. Significant increases also occur along the western border of Vermont, especially in the Champlain Valley. Minor increaes appear also in the greater Boston metro region, and southern and central Maine west and north of Portland.
```{r mapO3NEchange, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of percent change in summer seasonal Ozone concentrations across New England between 2011 and 2016 at Census Block Group level."}
# Map of O3 change across New England
tm_shape(ne_blkgrp_sf, unit = "mi") +
tm_fill("OZONE_pctChange", palette = "-RdYlGn",
style = "quantile",
title = "% Change",
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Change in summer Ozone \nConcentrations \n2011-2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
Averaged across the states, the differences in these changes are also apparent. Figure \@ref(fig:slopegraphO3NE) below compares the average summer Ozone (O~3~) concentrations by state and for the region between 2011 and 2016. New England as a whole showed a slightly less than a 1% increase in summer average Ozone concentrations, while Connecticut showed an increase of nearly 5%. Massachusetts increased as well, but by only 0.5%. All other states showed an average decline in Ozone, with Rhode Island leading (-2.6%). Although note that Rhode Island's concentrations still remain significantly above the regional average.
```{r slopegraphO3NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Slope graph of summer average Ozone concentrations for 2011 and 2016 for New England and states."}
# Slope graph of O3 by state and region between 2011 and 2016
# Create df of 2019 actual values
O319wSTAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(O3Mean = mean(OZONE_19, na.rm = TRUE),
O3wMean = weighted.mean(x = OZONE_19,
w = totalpopE, na.rm = TRUE)) %>%
mutate(Year = 2016)
# Create df of 2015 values
O315wSTAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(O3Mean = mean(o3_15, na.rm = TRUE),
O3wMean = weighted.mean(x = o3_15,
w = pop_15, na.rm = TRUE)) %>%
mutate(Year = 2011)
# Create regional average benchmark
O315NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(O3Mean = mean(o3_15, na.rm = TRUE),
O3wMean = weighted.mean(x = o3_15,
w = pop_15, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
O3Mean = O3Mean,
O3wMean = O3wMean,
Year = 2011)
O319NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(O3Mean = mean(OZONE_19, na.rm = TRUE),
O3wMean = weighted.mean(x = OZONE_19,
w = totalpopE, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
O3Mean = O3Mean,
O3wMean = O3wMean,
Year = 2016)
#rbind tables
O311_16wSTAvg_actual <- bind_rows(O315wSTAvgs_actual,
O319wSTAvgs_actual,
O315NEavg,
O319NEavg) %>%
mutate(Year = as.factor(Year),
O3Mean = round(O3wMean,2),
O3wMean = round(O3wMean,2))
# make slope graph
newggslopegraph(dataframe = O311_16wSTAvg_actual,
Times = Year,
Measurement = O3Mean,
Grouping = STATE,
Title = expression(paste("Summer Average Ozone (", O[3], ") Concentrations")),
SubTitle = expression(paste
(O[3]," (ppb)", sep = "")),
Caption = NULL,
LineColor = c("NEW ENGLAND" = "#000000",
"Connecticut" = "#E69F00",
"Massachusetts" = "#56B4E9",
"Rhode Island" = "#009E73",
"New Hampshire" = "#F0E442",
"Vermont" = "#0072B2",
"Maine" = "#D55E00"),
LineThickness = 1,
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
### Ozone (O~3~) in New England and Populations of Concern
In addition to variations in the general geography of Ozone (O~3~) concentrations, exposure to this pollutant also varies demographically. Figure \@ref(fig:barplotO3PopAvgNE) below shows population-weighted exposures for populations of concern relative to average Ozone concentrations for the region. For example, minorities in New England are exposed to summer Ozone concentrations that are more than 3% above concentrations for the region as a whole. Similarly, linguistically isolated households are exposed to concentrations 2.6% above the regional average. By contrast, low income persons are, on average, exposed to concentrations of Ozone at or below the regional average.
```{r barplotO3PopAvgNE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Graph of population-weighted average exposures to Ozone for populations of concern in New England relative to the regional average."}
# Pop Weighted avg of O3 for all Groups in New England relative to NE average
ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(totalpopE,
nhwhitepopE,
minorityE,
nhblackpopE,
nhamerindpopE,
nhasianpopE,
nhnativhpopE,
nhotherpopE,
nh2morepopE,
hisppopE,
povknownE,
num2povE,
eng_hhE,
eng_limitE,
age25upE,
lthsE,
allAgesE,
under5E,
over64E,
OZONE_19) %>%
gather(key = Group, value = Pop, totalpopE:over64E) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = OZONE_19, w = Pop, na.rm = TRUE),
O3Mean = mean(OZONE_19, na.rm = TRUE)) %>%
spread(key = Group, value = O3wMean) %>%
transmute(Minority = (minorityE/O3Mean - 1)*100,
#Minority_NHW = (minorityE/nhwhitepopE - 1)*100,
`Lang Isol` = (eng_limitE/O3Mean - 1)*100,
`Low Income` = (num2povE/O3Mean - 1)*100,
`No HS` = (lthsE/O3Mean - 1)*100,
`Under 5` = (under5E/O3Mean - 1)*100,
`Over 64` = (over64E/O3Mean - 1)*100) %>%
gather(key = Group, value = Pct) %>%
ggplot(aes(x = reorder(Group, -Pct), y = Pct, fill = Group)) +
geom_bar(stat = "identity", position = "identity") +
theme_minimal() +
labs(x = "", y = "", title = expression(atop(paste("Population-Weighted Ozone (", O[3], ") Exposure"), "(relative to New England average)"))) +
theme(legend.position = 'none') +
geom_text(aes(x = Group, y = Pct + 0.2 * sign(Pct),
label = paste0(round(Pct,2),"%")),
hjust = 0.5, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = 0)
```
Like the region as a whole, these populations have also experienced changes in exposure since 2011. The comparison between exposure for these groups since 2011 is displayed below in Figure \@ref(fig:slopegraphO3PopAvgNE). All populations of concern have experienced an increase in population-weighted exposure to Ozone, with minorities and persons in language-isolated households experiencing the greatest increase in exposure.
```{r slopegraphO3PopAvgNE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Slope graph of summer Ozone concentrations by population of concern for 2011 and 2016."}
# Pop Weighted avg of O3 EXPOSURE CHANGE 2011 - 2016 for all Groups in New England relative to NE average.
# Create df of 2019 actual values
O319wAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(minorityE,
num2povE,
eng_limitE,
lthsE,
under5E,
over64E,
OZONE_19) %>%
gather(key = Group, value = Pop, minorityE:over64E) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = OZONE_19,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "minorityE" ~ "Minority",
Group == "eng_limitE" ~ "Lang Isol",
Group == "num2povE" ~ "Low Income",
Group == "lthsE" ~ "No HS Dip",
Group == "under5E" ~ "Under 5",
Group == "over64E" ~ "Over 64")) %>%
mutate(Year = 2016)
# Create df of 2015 values
O315wAvgs_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(mins_15,
lowinc_15,
lingiso_15,
lths_15,
under5_15,
over64_15,
o3_15) %>%
gather(key = Group, value = Pop, mins_15:over64_15) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = o3_15,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "mins_15" ~ "Minority",
Group == "lingiso_15" ~ "Lang Isol",
Group == "lowinc_15" ~ "Low Income",
Group == "lths_15" ~ "No HS Dip",
Group == "under5_15" ~ "Under 5",
Group == "over64_15" ~ "Over 64")) %>%
mutate(Year = 2011)
# Create regional average benchmark
O315NEavg <- mean(ne_blkgrp_sf$o3_15, na.rm = TRUE)
O319NEavg <- mean(ne_blkgrp_sf$OZONE_19, na.rm = TRUE)
O3RegionalAvg_actual <- data.frame(
Group = c("REGIONAL AVG", "REGIONAL AVG"),
O3wMean = c(O315NEavg,O319NEavg),
Year = c(2011,2016)
)
#rbind tables
O311_16wAvg_actual <- bind_rows(O315wAvgs_actual,
O319wAvgs_actual,
O3RegionalAvg_actual) %>%
mutate(Year = as.factor(Year),
O3wMean = round(O3wMean,1))
# make slope graph
newggslopegraph(dataframe = O311_16wAvg_actual,
Times = Year,
Measurement = O3wMean,
Grouping = Group,
Title = "Population-Weighted Ozone Exposure",
SubTitle = expression(paste
(O[3]," (ppb)", sep = "")),
Caption = NULL,
LineColor = c("REGIONAL AVG" = "#000000",
"Lang Isol" = "#E69F00",
"Minority" = "#56B4E9",
"No HS Dip" = "#009E73",
"Low Income" = "#F0E442",
"Under 5" = "#0072B2",
"Over 64" = "#D55E00"),
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
Indeed, there is a moderate but statistically significant positive relationship between the proportion of minority residents and the concentration of Ozone (see Figure \@ref(fig:cormatrixO3PopAvg) below.).
```{r cormatrixO3PopAvg, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Spearman's correlation matrix of summer Ozone concentrations and the proportions of populations of concern by Census Block Group."}
# Create a correlation matrix of PM25 and populations of concern
corrO3 <- ne_blkgrp_sf %>%
as.data.frame() %>%
dplyr::transmute(Ozone = OZONE_19,
Minority = minority_pctE,
`Low Income` = pct2povE,
`Lang Isol` = eng_limit_pctE,
`No HS Dip` = pct_lthsE,
`Under 5` = pct_under5E,
`Over 64` = pct_over64E) %>%
drop_na() %>%
cor(method = "spearman")
# corrPM25
ggcorrplot(corrO3, hc.order = TRUE, type = "lower", lab = TRUE,
title = "Ozone Correlation Matrix for New England",
legend.title = "Spearman's \nCorrelation\nCoefficient")
```
## Analysis of Carbon Dioxide (CO~2~) in New England
CO~2~ emissions closely follow major roadways arcoss the region (see Figure \@ref(fig:mapCO2NE) below).
```{r mapCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of 2017 Carbon Dioxide (CO2) annual on-road emissions in metric tons per square kilometer across New England at Census Block Group level."}
# Map of CO2 across New England
ne_blkgrp_sf %>%
mutate(onroad_2017 = kgco2_2017/1000/(bg_area_m2/1000000)) %>%
tm_shape(., unit = "mi") +
tm_fill("onroad_2017", style = "quantile",
title = expression(paste
(CO[2]," (mtons/", km^2,")", sep = "")),
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=0)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Annual On-road \nCarbon Dioxide\nEmissions, 2017",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
Significant hot spots, or clusters of high CO~2~ emissions, appear around major New England cities, including Hartford, Providence, Portsmouth, Portland, and along the I-495 belt around Boston (see Figure \@ref(fig:hotspotCO2NE) below).
```{r hotspotCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Hot spot map of 2017 CO2 emissions at Census Block Group level."}
# Get rid of empty geometries and NAs, and convert to spdf
empty_geo <- st_is_empty(ne_blkgrp_sf)
ne_blkgrp_sp_DemoEJ <- ne_blkgrp_sf[!empty_geo,] %>%
mutate(onroad_2017 = kgco2_2017/1000) %>%
dplyr::select(GEOID,onroad_2017) %>%
# st_transform(., crs = 2163) %>% # convert to US National Atlas Equal Area
na.omit() %>%
as_Spatial()
# Calculate Queen's case neighbors
neighborsQC <- poly2nb(ne_blkgrp_sp_DemoEJ, queen = TRUE)
# Compute neighbor weights
# spdep::set.ZeroPolicyOption(TRUE)
listw <- nb2listw(neighborsQC, style = "W", zero.policy = TRUE)
# compute Getis-Ord Gi statistic
local_g <- localG(ne_blkgrp_sp_DemoEJ$onroad_2017, listw)
local_g <- cbind(ne_blkgrp_sp_DemoEJ, as.matrix(local_g))
names(local_g)[3] <- "gstat"
# map the results
tm_shape(local_g, unit = "mi",) +
tm_fill("gstat",
palette = "-RdBu",
style = "pretty",
title = expression(paste("Getis-Ord ", G[i]^"*")),
showNA = FALSE,
midpoint = NA,
labels = c("Significant Clusters","of Low Values", "Significant Clusters","of High Values")) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Hot Spot Map of \nCO2 for\nNew England", frame = FALSE, main.title.size = 0.6,
legend.position = c(.8,.2),
legend.title.size = 0.7)
```
CO~2~ emissions vary by state (see Table \@ref(tab:statsCO2NE) and Figure \@ref(fig:boxplotCO2NE) below). Massachusetts shows highest absolute emissions.
```{r statsCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Annual 2017 CO2 emissions (mtons) at Census Block Group level and by state."}
ne_blkgrp_sf %>%
mutate(onroad_2017 = kgco2_2017/1000,
onroad_perkm_2017 = kgco2_2017/1000/(bg_area_m2/1000000)) %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(Mean = round(mean(onroad_perkm_2017, na.rm = TRUE),0),
Median = round(median(onroad_perkm_2017, na.rm = TRUE),0),
Min = round(min(onroad_perkm_2017, na.rm = TRUE),0),
Max = round(max(onroad_perkm_2017, na.rm = TRUE),0),
`State Total` = sum(onroad_2017, na.rm = TRUE)) %>%
kableExtra::kable(format.args = list(big.mark = ','),
caption = "Annual 2017 CO2 emissions (mtons/km2) by Census block group and total CO2 emissions (mtons) by state")
```
```{r boxplotCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Boxplot of annual on-road Carbon Dioxoide emissions in metric tons per square kilometer by state at Census Block Group level."}
# boxplot of CO2 by state for 2017
ne_blkgrp_sf %>%
as.data.frame() %>%
mutate(onroad_2017 = kgco2_2017/1000/(bg_area_m2/1000000)) %>%
ggplot(aes(x = STATE, y = onroad_2017, fill = STATE)) +
geom_boxplot(notch = TRUE) +
ggtitle(expression(atop(paste("Carbon Dioxide (", CO[2], ") Emissions"), "by Census block group by New England state, 2017"))) +
theme_minimal() +
theme(legend.position = "none", axis.text=element_text(size=8)) +
xlab(NULL) +
ylab(expression(paste(CO[2]," (mtons/", km^2, ")", sep = ""))) +
coord_flip()
```
Since 1990, CO~2~ emissions increased significantly across the region, on average by `r {round((sum(ne_blkgrp_sf$kgco2_2017, na.rm = TRUE)-sum(ne_blkgrp_sf$kgco2_1990, na.rm = TRUE))/sum(ne_blkgrp_sf$kgco2_1990, na.rm = TRUE)*100,1)}`%. These changes have not been uniform (see Figure \@ref(fig:mapCO2NEchange) below). Except for Maine, the greatest declines, up to 97%, have been in outer suburban and rural areas. By contrast, increases in CO~2~ emissions of over 600% appear across most urban cores. Boston is the notable exception where increases have been relatively modest. Dramtic increases characterize areas around Worcester, Massachusetts and the South Shore of Massachusetts and the Cape, as well as around Portland, Maine, and from Stamford to Hartford, Connecticut. Significant increases also occur west and north of Montpelier, Vermont.
```{r mapCO2NEchange, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Map of percent change in annual CO2 emissions across New England between 1990 and 2017 at Census Block Group level."}
# Map of CO2 change across New England
ne_blkgrp_sf %>%
mutate(CO2_pctChange90_17 = (kgco2_2017 - kgco2_1990)/kgco2_1990*100) %>%
tm_shape(., unit = "mi") +
tm_fill("CO2_pctChange90_17", palette = "-RdYlGn",
style = "quantile",
title = "% Change",
legend.hist = TRUE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE,
midpoint = 0) +
tm_shape(ne_states_sf_cb) + tm_borders(alpha = 0.4) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ne_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black", xmod = 0.7, ymod = 0.2) +
tm_scale_bar(breaks = c(0, 50, 100), text.size = 0.5,
position = c(0.6,0.005)) +
tm_layout(title = "Change in annual CO2 \nEmissions \n1990-2017",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
```
Averaged across the states, the differences in these changes are also apparent, although less extreme than at the Census block group level. Table \@ref(tab:changeCO2NE) and Figure \@ref(fig:slopegraphCO2NE) below compares the annual CO~2~ emissions by state and for the region between 1990 and 2017. New England as a whole showed an approximately 20% increase in annual CO~2~ emissions. All states showed total increases, with New Hampshire leading with a 34% increase, followed by Maine with a 26% increase. Rhode Island showed the smallest increase since 1990 (2%), although note that Rhode Island's average annual emissions still remain significantly above the regional average.
```{r changeCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Annual 2017 CO2 emissions (mtons) and Percent Change by state at Census Block Group level."}
# acquire table of 1990 state pop values
library(tidycensus)
census_api_key("f2776fbc29cf847505de9308a82c8d65290d16b3")
ne_states_df90 <- map_df(ne_states, function(x) {
get_decennial(geography = "state",
variables = c(pop90 = "P0010001"),
state = x, output = "wide", year = 1990)
}) %>%
select(-GEOID)
ne_blkgrp_sf %>%
as.data.frame() %>%
mutate(onroad_2017 = kgco2_2017/1000,
onroad_1990 = kgco2_1990/1000) %>%
group_by(STATE) %>%
summarize(`1990 CO2 (mtons)` = sum(onroad_1990, na.rm = TRUE),
`2017 CO2 (mtons)` = sum(onroad_2017, na.rm = TRUE),
`Pct Change` =
paste0(
round(
(`2017 CO2 (mtons)` - `1990 CO2 (mtons)`)/`1990 CO2 (mtons)`*100,0),"%")) %>%
left_join(., ne_states_df, by = c("STATE" = "NAME")) %>%
mutate(`2017 Per Capita (mtons/person)` =
`2017 CO2 (mtons)`/totalpopE) %>%
left_join(., ne_states_df90, by = c("STATE" = "NAME")) %>%
mutate(`1990 Per Capita (mtons/person)` = `1990 CO2 (mtons)`/pop90,
`Per Capita Pct Change` =
paste0(
round(
(`2017 Per Capita (mtons/person)` - `1990 Per Capita (mtons/person)`)/`1990 Per Capita (mtons/person)`*100,0),"%")) %>%
transmute(STATE = STATE,
`1990 CO2 (mtons)` = `1990 CO2 (mtons)`,
`2017 CO2 (mtons)` = `2017 CO2 (mtons)`,
`Change` = `Pct Change`,
`1990 Per Capita` =
as.character(round(`1990 Per Capita (mtons/person)`,2)),
`2017 Per Capita` =
as.character(round(`2017 Per Capita (mtons/person)`,2)),
`Per Capita Change` = `Per Capita Pct Change`) %>%
kableExtra::kable(longtable = T, booktabs = T,
format.args = list(big.mark = ','),
caption = "Annual On-road Carbon Dioxide Emissions",
digits = 0, align = "r") %>%
kableExtra::kable_styling(latex_options = c("repeat_header"))
```
```{r slopegraphCO2NE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Slope graph of total CO2 emissions for 1990 and 2017 for New England and states."}
# Slope graph of CO2 by state and region between 1990 and 2017
# Create df of 2017 actual values
CO217ST_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(CO2total = sum(kgco2_2017, na.rm = TRUE)/1000) %>%
mutate(Year = 2017)
# Create df of 1990 values
CO290ST_actual <- ne_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(CO2total = sum(kgco2_1990, na.rm = TRUE)/1000) %>%
mutate(Year = 1990)
# Create regional average benchmark
CO290NE <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(CO2total = sum(kgco2_1990, na.rm = TRUE)/1000) %>%
transmute(STATE = "NEW ENGLAND",
CO2total = CO2total,
Year = 1990)
CO217NE <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(CO2total = sum(kgco2_2017, na.rm = TRUE)/1000) %>%
transmute(STATE = "NEW ENGLAND",
CO2total = CO2total,
Year = 2017)
#rbind tables
CO290_17ST_actual <- bind_rows(CO290ST_actual,
CO217ST_actual,
CO290NE,
CO217NE) %>%
mutate(Year = as.factor(Year),
CO2total = round(CO2total,0))
# make slope graph
newggslopegraph(dataframe = CO290_17ST_actual,
Times = Year,
Measurement = CO2total,
Grouping = STATE,
Title = expression(paste("Annual On-road ",
CO[2], " Emissions")),
SubTitle = expression(paste
(CO[2]," (mtons)", sep = "")),
Caption = NULL,
LineColor = c("NEW ENGLAND" = "#000000",
"Connecticut" = "#E69F00",
"Massachusetts" = "#56B4E9",
"Rhode Island" = "#009E73",
"New Hampshire" = "#F0E442",
"Vermont" = "#0072B2",
"Maine" = "#D55E00"),
LineThickness = 1,
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
The growth in CO~2~ emissions exceeds population growth across the region and in most states as is evident in the per capita emissions (see last three columns in Table \@ref(tab:changeCO2NE)). While New Hampshire leads in percentage growth of total emissions for the region, Maine leads in per capita growth. Only Vermont and Rhode Island showed declines in per capita emissions.
### Carbon Dioxide (CO~2~) in New England and Populations of Concern
In addition to variations in the general geography of CO~2~ emissions, exposure to these emissions also varies demographically. Figure \@ref(fig:barplotO3PopAvgNE) below shows population-weighted exposures for populations of concern relative to average CO~2~ emissions per square kilometer for the region. For example, language-isolated households in New England are exposed to CO~2~ emissions per square kilometer that are more than 69% above emissions for the region as a whole. Similarly, minorities are exposed to emissions over 49% above the regional average. By contrast, persons in over age 64 are, on average, exposed to emissions of CO~2~ over 14% below the regional average.
```{r barplotCO2PopAvgNE, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Graph of population-weighted average exposures to Carbon Dioxide emissions per square kilometer for populations of concern in New England relative to the regional average."}
# Pop Weighted avg of CO2 for all Groups in New England relative to NE average
ne_blkgrp_sf %>%
as.data.frame() %>%
mutate(co2_2017 = kgco2_2017/1000/(bg_area_m2/1000000)) %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(totalpopE,