-
Notifications
You must be signed in to change notification settings - Fork 0
/
Evacuation_RhodeIsland.R
671 lines (609 loc) · 27.6 KB
/
Evacuation_RhodeIsland.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Analysis of flooding and hurricane evacuation risks for populations of concern in Rhode Island
library(tidyverse)
library(sf)
library(tmap)
library(tmaptools)
library(lwgeom)
library(tigris)
options(tigris_use_cache = TRUE, tigris_class = "sf")
load("DATA/ne_layers.rds")
# Download Census TIGERLine hydrography for RI
## First, extract list of county names to use with tigris::water
ri_counties <- counties("RI") %>%
pull(NAME)
# Next, download water features for each county and rbind to one layer
ri_awater_sf <- rbind_tigris(
lapply(
ri_counties, function(x) area_water(state = "RI", county = x)
)
) %>%
st_union() %>%
st_as_sf() %>%
st_transform(., crs = 2840)
# Read in NFHL for RI. Data comes from FEMA.
# List available layers in geodatabase
# st_layers("DATA/FEMA/RI/NFHL_44_20181118.gdb")
# Read in flood hazard areas
ri_fhza_2840 <- st_read(dsn = "DATA/FEMA/RI/NFHL_44_20181118.gdb",
layer = "S_Fld_Haz_Ar") %>%
filter(FLD_ZONE != "OPEN WATER" &
!ZONE_SUBTY %in% c("AREA OF MINIMAL FLOOD HAZARD",
"AREA WITH REDUCED FLOOD RISK DUE TO LEVEE")) %>%
mutate(FLD_ZONE = as.character(FLD_ZONE)) %>% # omit unused factor levels
st_transform(., crs = 2840) %>%
st_make_valid() %>%
group_by(FLD_ZONE) %>% # aggregate flood zone polygons
summarize(count = n()) %>%
mutate(Area = st_area(.),
Interval = case_when(
FLD_ZONE == "A" ~ "100-year",
FLD_ZONE == "AE" ~ "100-year",
FLD_ZONE == "AH" ~ "100-year",
FLD_ZONE == "AO" ~ "100-year",
FLD_ZONE == "VE" ~ "100-year",
FLD_ZONE == "X" ~ "500-year"))
# crop flood zones to land areas only
ri_state_sf <- ne_states_sf_cb %>%
filter(NAME == "Rhode Island")
ri_fhza_2840_land <- ri_fhza_2840 %>%
crop_shape(., ri_state_sf, polygon = TRUE) %>%
st_difference(., ri_awater_sf) %>%
mutate(Area = st_area(.))
# Percentage of RI land within flood zones
ri_area <- as.numeric(ri_state_sf$ALAND)
# Total and percentage of land area of RI within flood zones
ri_fhza_2840_land %>%
as.data.frame() %>%
group_by(Interval) %>%
summarize(SqKm = round(as.numeric(sum(Area)/10^6),1),
SqMi = round(as.numeric(SqKm/2.59),1),
PctArea = paste0(as.character(round(as.numeric(sum(Area)/ri_area*100),1)),"%"))
# read in hurricane evacuation zone layer
ri_hea_sf <- st_read(dsn = "DATA/FEMA/RI",
layer = "Hurricane_Evacuation_Areas") %>%
mutate(EVAC = as.character(EVAC)) %>%
filter(EVAC %in% c("A","B","C")) %>%
st_transform(., crs = 2840) %>%
st_make_valid() %>%
mutate(Area = st_area(.))
# Total and percentage of land area with hurricane evacuation zones
ri_hea_sf %>%
as.data.frame() %>%
group_by(EVAC) %>%
summarize(SqKm = round(as.numeric(sum(Area)/10^6),1),
SqMi = round(as.numeric(SqKm/2.59),1),
PctArea = paste0(as.character(round(as.numeric(sum(Area)/ri_area*100),1)),"%"))
# Convert to projected local CRS EPSG:2840: NAD83(HARN) / Rhode Island
ri_blkgrp_2840 <- ne_blkgrp_sf %>%
filter(STATE == "Rhode Island") %>%
st_transform(., crs = 2840)
ri_tracts_2840 <- ne_tracts_sf %>%
filter(STATE == "Rhode Island") %>%
st_transform(., crs = 2840)
# Get rid of empty geometries
empty_geo <- st_is_empty(ri_fhza_2840)
ri_fhza_2840 <- ri_fhza_2840[!empty_geo,]
empty_geo <- st_is_empty(ri_blkgrp_2840)
ri_blkgrp_2840 <- ri_blkgrp_2840[!empty_geo,]
empty_geo <- st_is_empty(ri_tracts_2840)
ri_tracts_2840 <- ri_tracts_2840[!empty_geo,]
# Write out block groups for processing in ArcGIS
ri_blkgrp_2840 %>%
dplyr::select(GEOID) %>%
st_write(., "DATA/FEMA/RI/ri_blkgrp_2840.shp", delete_layer = TRUE)
# repeat for tracts
ri_tracts_2840 %>%
dplyr::select(GEOID) %>%
st_write(., "DATA/FEMA/RI/ri_tracts_2840.shp", delete_layer = TRUE)
# Use dasymetric mapping to calculate populations within flood zones. Approach follows method used by Qiang (2019) to eliminate unpopulated areas of census polygons and then reallocate populations to developed areas as identified in National Land Cover Dataset (NLCD).
# Perform NLCD raster-to-vector conversion, vector erase/difference, and vector intersections in ArcMap because it takes too long in R.
# In ArcMap:
# Convert NLCD raster to shapefile. Isolate undeveloped areas.
# Erase areas of ri_blkgrp_2840 and ri_tracts_2840 that overlap with undeveloped areas in NLCD shapefiles. Compute OldArea of erased polygons in sqm to identify area of developed polygons remaining.
# Intersect erased ri_blkgrps and erased ri_tracts with NFHZA and Hurricane evacuation zones. Read back into R.
# read in processed ri_blkgrps and ri_tracts
st_layers(dsn = "DATA/FEMA/RI")
ri_blkgrps_nfhza <- st_read(dsn = "DATA/FEMA/RI",
layer = "ri_blkgrps_nfhza") %>%
left_join(., as.data.frame(ri_blkgrp_2840), by = "GEOID") %>%
st_transform(., crs = 2840) %>%
mutate(NewArea = st_area(.)) %>%
st_make_valid()
ri_blkgrps_hevac <- st_read(dsn = "DATA/FEMA/RI",
layer = "ri_blkgrps_hevac") %>%
left_join(., as.data.frame(ri_blkgrp_2840), by = "GEOID") %>%
st_transform(., crs = 2840) %>%
mutate(NewArea = st_area(.)) %>%
st_make_valid()
ri_tracts_nfhza <- st_read(dsn = "DATA/FEMA/RI",
layer = "ri_tracts_nfhza") %>%
left_join(., as.data.frame(ri_tracts_2840), by = "GEOID") %>%
st_transform(., crs = 2840) %>%
mutate(NewArea = st_area(.)) %>%
st_make_valid()
ri_tracts_hevac <- st_read(dsn = "DATA/FEMA/RI",
layer = "ri_tracts_hevac") %>%
left_join(., as.data.frame(ri_tracts_2840), by = "GEOID") %>%
st_transform(., crs = 2840) %>%
mutate(NewArea = st_area(.)) %>%
st_make_valid()
# Apportion populations based on geographic proportion of intersect
ri_blkgrps_nfhza <- ri_blkgrps_nfhza %>%
mutate(RI_LOWINC = if_else(RI_INCOME == "I",totalpopE,0)) %>%
mutate(RI_LOWINC = replace_na(RI_LOWINC,0)) %>%
mutate(RI_MINORITIES = if_else(RI_MINORITY == "M", totalpopE,0)) %>%
mutate(RI_MINORITIES = replace_na(RI_MINORITIES,0)) %>%
mutate(Proportion = as.numeric(NewArea/OldArea),
NewPop = totalpopE*Proportion,
NewMinority = minorityE*Proportion,
NewUnder5 = under5E*Proportion,
NewOver64 = over64E*Proportion,
NewUnder18 = under18E*Proportion,
NewEng_limit = eng_limitE*Proportion,
NewPov = num2povE*Proportion,
NewLths = lthsE*Proportion,
NewRI_LOWINC = RI_LOWINC*Proportion,
NewRI_MINORITIES = RI_MINORITIES*Proportion)
ri_blkgrps_hevac <- ri_blkgrps_hevac %>%
mutate(RI_LOWINC = if_else(RI_INCOME == "I",totalpopE,0)) %>%
mutate(RI_LOWINC = replace_na(RI_LOWINC,0)) %>%
mutate(RI_MINORITIES = if_else(RI_MINORITY == "M", totalpopE,0)) %>%
mutate(RI_MINORITIES = replace_na(RI_MINORITIES,0)) %>%
mutate(Proportion = as.numeric(NewArea/OldArea),
NewPop = totalpopE*Proportion,
NewMinority = minorityE*Proportion,
NewUnder5 = under5E*Proportion,
NewOver64 = over64E*Proportion,
NewUnder18 = under18E*Proportion,
NewEng_limit = eng_limitE*Proportion,
NewPov = num2povE*Proportion,
NewLths = lthsE*Proportion,
NewRI_LOWINC = RI_LOWINC*Proportion,
NewRI_MINORITIES = RI_MINORITIES*Proportion)
ri_tracts_nfhza <- ri_tracts_nfhza %>%
mutate(Proportion = as.numeric(NewArea/OldArea),
NewDisabled = disabledOver18E*Proportion,
NewNoCar = HHnoCarE*Proportion)
ri_tracts_hevac <- ri_tracts_hevac %>%
mutate(Proportion = as.numeric(NewArea/OldArea),
NewDisabled = disabledOver18E*Proportion,
NewNoCar = HHnoCarE*Proportion)
# Compute total block group populations within flood zones
ri_flood_blkgrp_df <- ri_blkgrps_nfhza %>%
as.data.frame() %>%
summarize(`Total Pop` = as.integer(sum(NewPop)),
Minority = as.integer(sum(NewMinority)),
`Under 5` = as.integer(sum(NewUnder5)),
`Over 64` = as.integer(sum(NewOver64)),
`Under 18` = as.integer(sum(NewUnder18)),
`Limited English HH` = as.integer(sum(NewEng_limit)),
`Low Income` = as.integer(sum(NewPov)),
`No HS Dip` = as.integer(sum(NewLths)),
`RI Low Income` = as.integer(sum(NewRI_LOWINC)),
`RI Minority` = as.integer(sum(NewRI_MINORITIES))) %>%
gather(key = Group, value = FloodPop)
# Compute total block group populations within hurricane evac zones
ri_hevac_blkgrp_df <- ri_blkgrps_hevac %>%
as.data.frame() %>%
summarize(`Total Pop` = as.integer(sum(NewPop)),
Minority = as.integer(sum(NewMinority)),
`Under 5` = as.integer(sum(NewUnder5)),
`Over 64` = as.integer(sum(NewOver64)),
`Under 18` = as.integer(sum(NewUnder18)),
`Limited English HH` = as.integer(sum(NewEng_limit)),
`Low Income` = as.integer(sum(NewPov)),
`No HS Dip` = as.integer(sum(NewLths)),
`RI Low Income` = as.integer(sum(NewRI_LOWINC)),
`RI Minority` = as.integer(sum(NewRI_MINORITIES))) %>%
gather(key = Group, value = HevacPop)
# Compute total tract populations within flood zones
ri_flood_tracts_df <- ri_tracts_nfhza %>%
as.data.frame() %>%
summarize(`Disabled` = as.integer(sum(NewDisabled)),
`No Car HH` = as.integer(sum(NewNoCar))) %>%
gather(key = Group, value = FloodPop)
ri_hevac_tracts_df <- ri_tracts_hevac %>%
as.data.frame() %>%
summarize(`Disabled` = as.integer(sum(NewDisabled)),
`No Car HH` = as.integer(sum(NewNoCar))) %>%
gather(key = Group, value = HevacPop)
# Compute total tract populations within the state for same groups
ri_tract_flood_pops_df <- ri_tracts_2840 %>%
as.data.frame() %>%
summarize(`Disabled` = sum(disabledOver18E),
`No Car HH` = sum(HHnoCarE)) %>%
gather(key = Group, value = RIPop) %>%
left_join(.,ri_flood_tracts_df, by = "Group")
ri_tract_hevac_pops_df <- ri_tracts_2840 %>%
as.data.frame() %>%
summarize(`Disabled` = sum(disabledOver18E),
`No Car HH` = sum(HHnoCarE)) %>%
gather(key = Group, value = RIPop) %>%
left_join(.,ri_hevac_tracts_df, by = "Group")
# Compute populations for state,and join with flood pops
ri_FloodPops_df <- ri_blkgrp_2840 %>%
as.data.frame() %>%
mutate(RI_LOWINC = if_else(RI_INCOME == "I",totalpopE,0)) %>%
mutate(RI_LOWINC = replace_na(RI_LOWINC,0)) %>%
mutate(RI_MINORITIES = if_else(RI_MINORITY == "M",totalpopE,0)) %>%
mutate(RI_MINORITIES = replace_na(RI_MINORITIES,0)) %>%
summarize(`Total Pop` = sum(totalpopE),
Minority = sum(minorityE),
`Under 5` = sum(under5E),
`Over 64` = sum(over64E),
`Under 18` = sum(under18E),
`Limited English HH` = sum(eng_limitE),
`Low Income` = sum(num2povE),
`No HS Dip` = sum(lthsE),
`RI Low Income` = sum(RI_LOWINC, na.rm = TRUE),
`RI Minority` = sum(RI_MINORITIES, na.rm = TRUE)) %>%
gather(key = Group, value = RIPop) %>%
left_join(., ri_flood_blkgrp_df, by = "Group") %>%
rbind(.,ri_tract_flood_pops_df) %>%
mutate(PctFlood = FloodPop/RIPop*100)
# Compute populations for state, and join with hurricane evac pops
ri_HevacPops_df <- ri_blkgrp_2840 %>%
as.data.frame() %>%
mutate(RI_LOWINC = if_else(RI_INCOME == "I",totalpopE,0)) %>%
mutate(RI_LOWINC = replace_na(RI_LOWINC,0)) %>%
mutate(RI_MINORITIES = if_else(RI_MINORITY == "M",totalpopE,0)) %>%
mutate(RI_MINORITIES = replace_na(RI_MINORITIES,0)) %>%
summarize(`Total Pop` = sum(totalpopE),
Minority = sum(minorityE),
`Under 5` = sum(under5E),
`Over 64` = sum(over64E),
`Under 18` = sum(under18E),
`Limited English HH` = sum(eng_limitE),
`Low Income` = sum(num2povE),
`No HS Dip` = sum(lthsE),
`RI Low Income` = sum(RI_LOWINC, na.rm = TRUE),
`RI Minority` = sum(RI_MINORITIES, na.rm = TRUE)) %>%
gather(key = Group, value = RIPop) %>%
left_join(., ri_hevac_blkgrp_df, by = "Group") %>%
rbind(.,ri_tract_hevac_pops_df) %>%
mutate(PctHevac = HevacPop/RIPop*100)
# Show table of pops within flood zones
ri_FloodPops_df %>%
arrange(-FloodPop)
# Create lollipop plot of pops within flood zones
ri_FloodPops_df %>%
ggplot(aes(x = reorder(Group,-PctFlood),
y = PctFlood)) +
geom_segment(aes(x = reorder(Group,-PctFlood),
xend = reorder(Group,-PctFlood),
y = ri_FloodPops_df[1,4], yend = PctFlood),
color = "skyblue") +
geom_point(color = "blue", size = 4, alpha = 0.8) +
coord_flip() + xlab("") + ylab("") +
ggtitle("Rhode Island Populations within Flood Zones") + theme_light() +
theme(panel.grid.major.y = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank()) +
geom_text(aes(x = Group, y = PctFlood + 0.2 * sign(PctFlood),
label = paste0(round(PctFlood,1),"%")),
hjust = 0.1, vjust = -0.5, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = ri_FloodPops_df[1,4], linetype = "dashed") +
geom_text(aes(x = "Disabled", y = 9.1, label = "Below state avg"),
color = "gray48") +
geom_segment(aes(x = "No Car HH", xend = "No Car HH", y = 10, yend = 8.2),
arrow = arrow(length = unit(0.3,"cm"))) +
geom_text(aes(x = "Low Income", y = 11.3, label = "Above state avg"),
color = "gray48") +
geom_segment(aes(x = "Under 18", xend = "Under 18", y = 10.4, yend = 12.2),
arrow = arrow(length = unit(0.3,"cm")))
# Create a dot density map of total populations and overlay on flood zones
# Create point layer of major cities for context
# Note cb=FALSE is necessary for extracting centroids from town polygons. Otherwise, if cb=TRUE, cannot extract centroids from multipolygon features.
ri_towns_sf_pts <- county_subdivisions(state = "RI", cb = TRUE) %>%
filter(NAME %in% c("Providence",
"Woonsocket",
"Pawtucket",
"Warwick",
"Bristol",
"Portsmouth",
"Newport",
"Narragansett",
"North Kingstown",
"Charlestown",
"Situate",
"Glocester")) %>%
st_transform(., crs = 2840) %>%
st_centroid(of_largest_polygon = TRUE)
# Create road layer for context
ri_highways <- tigris::primary_roads() %>%
filter(FULLNAME %in% c("I- 95","I- 195","I- 295", "US Hwy 6")) %>%
tmaptools::crop_shape(., ne_states_sf_cb) %>%
st_transform(., crs = 2840)
# Extract highway segments for labeling
I95roadSegment <- ri_highways %>%
filter(LINEARID == "110468245978")
I95roadSegment2 <- ri_highways %>%
filter(LINEARID == "1107052605232")
I295roadSegment <- ri_highways %>%
filter(LINEARID == "1104755623349")
I195roadSegment <- ri_highways %>%
filter(LINEARID == "110448466166")
# Create custom icons of highway shields
I95 <- tmap_icons(file = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/I-95.svg/200px-I-95.svg.png")
I195 <- tmap_icons("https://upload.wikimedia.org/wikipedia/commons/thumb/f/f7/I-195.svg/200px-I-195.svg.png")
I295 <- tmap_icons("https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/I-295.svg/200px-I-295.svg.png")
# Create random points, with 1 point for every 100 people
ri_totalpop_pts <- ri_blkgrp_2840 %>%
select(totalpopE) %>%
filter(totalpopE >= 100) %>%
st_sample(., size = round(.$totalpopE/100)) %>% # create 1 random point for every 100 people
st_sf(.) %>%
mutate(Group = "Total Pop")
# Map totalpop and flood zones
tm_layout(bg.color = "#e6f3f7") +
tm_shape(ri_blkgrp_2840, unit = "mi") + tm_fill(col = "white") +
tm_shape(ne_states_sf_cb) + tm_fill(col="white") +
tm_shape(ri_awater_sf) + tm_fill(col = "#e6f3f7") +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_totalpop_pts) + tm_dots(col = "forestgreen",
labels = "1 dot = 100 persons") +
tm_shape(ri_fhza_2840_land) +
tm_fill(col = "Interval",
palette = c("gold", "goldenrod3"),
labels = c("1% AEP (100-year)", "0.2% AEP (500-year)"),
title = "FEMA Flood Zones",
alpha = 0.6,
border.alpha = 0) +
tm_shape(ri_fhza_2840_land) +
tm_borders(col = "goldenrod1",
lwd = 0.5,
alpha = 0.6) +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_highways) + tm_lines(col = "seashell4", lwd = 2) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I195roadSegment) +
tm_symbols(shape = I195, border.lwd = NA, size = 0.25) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.25) +
tm_shape(ri_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 5, 10), text.size = 0.5,
position = c(0.6,0.005)) +
tm_add_legend(type = "fill", col = "forestgreen",
border.col = "white", border.alpha = 0,
labels = "1 dot = 100 persons",
title = "Total Population") +
tm_layout(title = "Population Distribution \nand Flood Zones",
frame = TRUE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
# Create a dot density map of transit-dependent populations in flood zone
# Create random points, with 1 point for every 5 people
Over64_nfhza_pts <- ri_blkgrps_nfhza %>%
dplyr::select(NewOver64) %>%
filter(NewOver64 >= 5) %>%
st_sample(., size = round(.$NewOver64/5)) %>% # create 1 random point for every 5 people
st_sf(.) %>%
mutate(Group = "Over 64")
Disabled_nfhza_pts <- ri_tracts_nfhza %>%
dplyr::select(NewDisabled) %>%
filter(NewDisabled >= 5) %>%
st_sample(., size = round(.$NewDisabled/5)) %>%
st_sf(.) %>%
mutate(Group = "Disabled")
NoCarHH_nfhza_pts <- ri_tracts_nfhza %>%
dplyr::select(NewNoCar) %>%
filter(NewNoCar >= 5) %>%
st_sample(., size = round(.$NewNoCar/5)) %>%
st_sf(.) %>%
mutate(Group = "No Car HH")
# Bring them together
ri_nfhza_vulnerable <- rbind(Over64_nfhza_pts,Disabled_nfhza_pts,
NoCarHH_nfhza_pts) %>%
slice(sample(1:n())) # randomise order to avoid bias in plotting order
# Map transit-dependent pops and flood zones
tm_layout(bg.color = "#e6f3f7") +
tm_shape(ri_blkgrp_2840, unit = "mi") + tm_fill(col = "white") +
tm_shape(ne_states_sf_cb) + tm_fill(col="white") +
tm_shape(ri_awater_sf) + tm_fill(col = "#e6f3f7") +
tm_shape(ri_fhza_2840_land) +
tm_fill(col = "Interval",
palette = c("gold", "goldenrod3"),
labels = c("1% AEP (100-year)", "0.2% AEP (500-year)"),
title = "FEMA Flood Zones",
border.alpha = 0) +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_nfhza_vulnerable) + tm_dots(col = "Group",
palette = c("green","red","blue"),
legend.show = FALSE) +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_highways) + tm_lines(col = "seashell4", lwd = 2) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I195roadSegment) +
tm_symbols(shape = I195, border.lwd = NA, size = 0.25) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.25) +
tm_shape(ri_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 5, 10), text.size = 0.5,
position = c(0.6,0.005)) +
tm_add_legend(type = "fill", col = c("green","red","blue"),
border.col = "white", border.alpha = 0,
labels = c("Disabled", "No Car HH", "Over 64"),
title = "Population\nGroup*") +
tm_layout(title = "Transit Dependent Populations \nwithin Flood Zones",
frame = TRUE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
# Show table of pops within hurricane evacuation zones
ri_HevacPops_df %>%
arrange(-HevacPop)
# Create lollipop plot of pops within hurricane evac zones
ri_HevacPops_df %>%
ggplot(aes(x = reorder(Group,-PctHevac),
y = PctHevac)) +
geom_segment(aes(x = reorder(Group,-PctHevac),
xend = reorder(Group,-PctHevac),
y = ri_HevacPops_df[1,4], yend = PctHevac),
color = "skyblue") +
geom_point(color = "blue", size = 4, alpha = 0.8) +
coord_flip() + xlab("") + ylab("") +
ggtitle("Rhode Island Populations within Hurricane Evacuation Zones") +
theme_light() +
theme(panel.grid.major.y = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank()) +
geom_text(aes(x = Group, y = PctHevac + 0.2 * sign(PctHevac),
label = paste0(round(PctHevac,1),"%")),
hjust = 0.1, vjust = -0.5, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = ri_HevacPops_df[1,4], linetype = "dashed") +
geom_text(aes(x = "Disabled", y = 10.3, label = "Below state avg"),
color = "gray48") +
geom_segment(aes(x = "No Car HH", xend = "No Car HH", y = 11.4, yend = 9.6),
arrow = arrow(length = unit(0.3,"cm"))) +
geom_text(aes(x = "Low Income", y = 13, label = "Above state avg"),
color = "gray48") +
geom_segment(aes(x = "Under 18", xend = "Under 18", y = 11.8, yend = 13.6),
arrow = arrow(length = unit(0.3,"cm")))
# create simplified version of hurricane evac polygons
ri_hea_sf_agg <-
ri_hea_sf %>%
group_by(EVAC) %>%
summarize()
r_hea_cata <- ri_hea_sf_agg %>%
filter(EVAC == "A")
r_hea_catb <- ri_hea_sf_agg %>%
filter(EVAC == "B")
# Map totalpop and hurricane evacuation zones
tm_layout(bg.color = "#e6f3f7") +
tm_shape(ri_blkgrp_2840, unit = "mi") + tm_fill(col = "white") +
tm_shape(ne_states_sf_cb) + tm_fill(col="white") +
tm_shape(ri_awater_sf) + tm_fill(col = "#e6f3f7") +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_totalpop_pts) + tm_dots(col = "forestgreen",
labels = "1 dot = 100 persons") +
tm_shape(ri_hea_sf_agg) +
tm_fill(col = "EVAC",
palette = c("darkkhaki", "rosybrown1", "khaki"),
labels = c("A: Catgeory 1 - 2",
"B: Category 3 - 4",
"C: Category 5"),
title = "Evacuation Zone and\nHurricane Category",
alpha = 0.6) +
tm_shape(r_hea_cata) +
tm_borders(col = "darkgoldenrod",
lwd = 0.5,
alpha = 0.6) +
tm_shape(r_hea_catb) +
tm_borders(col = "rosybrown3",
lwd = 0.5,
alpha = 0.6) +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_highways) + tm_lines(col = "seashell4", lwd = 2) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I195roadSegment) +
tm_symbols(shape = I195, border.lwd = NA, size = 0.25) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.25) +
tm_shape(ri_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 5, 10), text.size = 0.5,
position = c(0.6,0.005)) +
tm_add_legend(type = "fill", col = "forestgreen",
border.col = "white", border.alpha = 0,
labels = "1 dot = 100 persons",
title = "Total Population") +
tm_layout(title = "Population Distribution \nand Hurricane\nEvacuation Zones",
frame = TRUE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
# Create a dot density of transit-dependent populations within hurricane evacuation zones
# Create random points, with 1 point for every 5 people
Over64_hevac_pts <- ri_blkgrps_hevac %>%
dplyr::select(NewOver64) %>%
filter(NewOver64 >= 5) %>%
st_sample(., size = round(.$NewOver64/5)) %>% # create 1 random point for every 5 people
st_sf(.) %>%
mutate(Group = "Over 64")
Disabled_hevac_pts <- ri_tracts_hevac %>%
dplyr::select(NewDisabled) %>%
filter(NewDisabled >= 5) %>%
st_sample(., size = round(.$NewDisabled/5)) %>%
st_sf(.) %>%
mutate(Group = "Disabled")
NoCarHH_hevac_pts <- ri_tracts_hevac %>%
dplyr::select(NewNoCar) %>%
filter(NewNoCar >= 5) %>%
st_sample(., size = round(.$NewNoCar/5)) %>%
st_sf(.) %>%
mutate(Group = "No Car HH")
# Bring them together
ri_hevac_vulnerable <- rbind(Over64_hevac_pts,Disabled_hevac_pts,
NoCarHH_hevac_pts) %>%
slice(sample(1:n())) # randomise order to avoid bias in plotting order
# Map them out
tm_layout(bg.color = "#e6f3f7") +
tm_shape(ri_blkgrp_2840, unit = "mi") + tm_fill(col = "white") +
tm_shape(ne_states_sf_cb) + tm_fill(col="white") +
tm_shape(ri_awater_sf) + tm_fill(col = "#e6f3f7") +
tm_shape(ri_hea_sf) +
tm_fill(col = "EVAC",
palette = c("darkkhaki", "rosybrown1", "khaki"),
labels = c("A: Catgeory 1 - 2",
"B: Category 3 - 4",
"C: Category 5"),
title = "Evacuation Zone and\nHurricane Category") +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(ri_hevac_vulnerable) + tm_dots(col = "Group",
palette = c("green","red","blue"),
legend.show = FALSE) +
tm_shape(ne_states_sf_cb) + tm_borders() +
tm_shape(ri_highways) + tm_lines(col = "seashell4", lwd = 2) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.25) +
tm_shape(I195roadSegment) +
tm_symbols(shape = I195, border.lwd = NA, size = 0.25) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.25) +
tm_shape(ri_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 5, 10), text.size = 0.5,
position = c(0.6,0.005)) +
tm_add_legend(type = "fill", col = c("green","red","blue"),
border.col = "white", border.alpha = 0,
labels = c("Disabled", "No Car HH", "Over 64"),
title = "Population\nGroup*") +
tm_layout(title = "Transit Dependent Populations \nwithin Hurricane Evacuation\nZones",
frame = TRUE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
##### TEST FOR EXPLORATION
tm_shape(ri_hea_sf) +
tm_fill(col = "EVAC",
palette = c("darkkhaki", "rosybrown1", "khaki"),
labels = c("A: Catgeory 1 - 2",
"B: Category 3 - 4"),
title = "Evacuation Zone and\nHurricane Category",
alpha = 0.6) +
tm_shape(ri_hevac_vulnerable) + tm_dots(col = "Group",
palette = c("green","red","blue"),
alpha = 0.6)