-
Notifications
You must be signed in to change notification settings - Fork 24
/
log_parse.py
500 lines (370 loc) · 17.1 KB
/
log_parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#!/usr/bin/env python2.7
#
# Project Horus - Browser-Based Chase Mapper
# Log File Parsing
#
# Copyright (C) 2018 Mark Jessop <[email protected]>
# Released under GNU GPL v3 or later
#
import argparse
import datetime
import json
import logging
import sys
import numpy as np
import matplotlib.pyplot as plt
from chasemapper.earthmaths import *
from chasemapper.geometry import *
from dateutil.parser import parse
from cusfpredict.reader import *
def read_file(filename):
""" Read log file, and output an array of dicts. """
_output = []
_f = open(filename, 'r')
for _line in _f:
try:
_data = json.loads(_line)
_output.append(_data)
except Exception as e:
logging.debug("Error reading line: %s" % str(e))
logging.info("Read %d log entries." % len(_output))
return _output
def stringify_entry(entry):
""" Convert a balloon telemetry entry to a string """
_out = "%s,%.6f,%.6f,%d\n" % (entry['time'], entry['lat'], entry['lon'], entry['alt'])
return _out
def extract_data(log_entries, csv_dump=None):
""" Step through the log entries, and extract:
- Car position telemetry
- Balloon positions
- Predictions
"""
# There's only ever going to be one car showing up on the map, so we just output a list.
_car = []
# We might have more than one balloon though, so we use a dictionary, with one entry per callsign.
_telemetry = {}
if csv_dump is not None:
csv_out = open(csv_dump, 'w')
for _entry in log_entries:
if _entry['log_type'] == "CAR POSITION":
_car.append(_entry)
elif _entry['log_type'] == "BALLOON TELEMETRY":
# Extract the callsign.
_call = _entry['callsign']
if _call not in _telemetry:
_telemetry[_call] = {'telemetry': [], 'predictions': []}
_telemetry[_call]['telemetry'].append(_entry)
if csv_dump is not None:
csv_out.write(stringify_entry(_entry))
elif _entry['log_type'] == "PREDICTION":
# Extract the callsign.
_call = _entry['callsign']
if _call not in _telemetry:
_telemetry[_call] = {'telemetry': [], 'predictions': []}
_telemetry[_call]['predictions'].append(_entry)
logging.info("Extracted %d Car Positions" % len(_car))
for _call in _telemetry:
logging.info("Callsign %s: Extracted %d telemetry positions, %d predictions." % (_call, len(_telemetry[_call]['telemetry']), len(_telemetry[_call]['predictions'])))
if csv_dump is not None:
csv_out.close()
return (_car, _telemetry)
def flight_stats(telemetry, ascent_threshold = 3.0, descent_threshold=-5.0, landing_threshold = 3.0):
""" Process a set of balloon telemetry, and calculate some statistics about the flight """
asc_rate_avg_length = 5
_stats = {
'ascent_rates': np.array([]),
'positions': [],
'raw_ascent_rates': [],
'altitudes': [],
'speeds': [],
'headings': []
}
_flight_segment = "UNKNOWN"
_track = GenericTrack()
for _entry in telemetry:
# Fix timestamps if they do not have a timezone
if _entry['time'].endswith('Z') or _entry['time'].endswith('+00:00'):
pass
else:
_entry['time'] += "Z"
if _entry['log_time'].endswith('Z') or _entry['log_time'].endswith('+00:00'):
pass
else:
_entry['log_time'] += "Z"
# Produce a dict which we can pass into the GenericTrack object.
_position = {
'time': parse(_entry['time']),
'lat': _entry['lat'],
'lon': _entry['lon'],
'alt': _entry['alt']
}
_stats['positions'].append([_position['time'], _position['lat'], _position['lon'], _position['alt']])
_state = _track.add_telemetry(_position)
#print(_state)
if _state == None:
continue
_stats['altitudes'].append(_state['alt'])
_stats['raw_ascent_rates'].append(_state['ascent_rate'])
_stats['speeds'].append(_state['speed'])
_stats['headings'].append(_state['heading'])
if len(_stats['ascent_rates']) < asc_rate_avg_length:
# Not enough data to make any judgements about the state of the flight yet.
_stats['ascent_rates'] = np.append(_stats['ascent_rates'], _state['ascent_rate'])
else:
# Roll the array, and add the new value on the end.
_stats['ascent_rates'] = np.roll(_stats['ascent_rates'], -1)
_stats['ascent_rates'][-1] = _state['ascent_rate']
_mean_asc_rate = np.mean(_stats['ascent_rates'])
if _flight_segment == "UNKNOWN":
# Make a determination on flight state based on what we know now.
if _mean_asc_rate > ascent_threshold:
_flight_segment = "ASCENT"
_stats['launch'] = [_state['time'], _state['lat'], _state['lon'], _state['alt']]
logging.info("Detected Launch: %s, %.5f, %.5f, %dm" %
(_state['time'].isoformat(), _state['lat'], _state['lon'], _state['alt']))
elif _mean_asc_rate < descent_threshold:
_flight_segment = "DESCENT"
else:
pass
if _flight_segment == "ASCENT":
if _track.track_history[-1][3] < _track.track_history[-2][3]:
# Possible detection of burst.
if 'burst_position' not in _stats:
_stats['burst_position'] = _track.track_history[-2]
logging.info("Detected Burst: %s, %.5f, %.5f, %dm" % (
_stats['burst_position'][0].isoformat(),
_stats['burst_position'][1],
_stats['burst_position'][2],
_stats['burst_position'][3]
))
logging.info("Average ascent rate: %.2f" % np.mean(_stats['raw_ascent_rates']))
if _mean_asc_rate < descent_threshold:
_flight_segment = "DESCENT"
continue
if _flight_segment == "DESCENT":
print(abs(_mean_asc_rate))
if abs(_mean_asc_rate) < landing_threshold:
_stats['landing'] = [parse(_entry['log_time']), _state['lat'], _state['lon'], _state['alt']]
logging.info("Detected Landing: %s, %.5f, %.5f, %dm" %
(_entry['log_time'], _state['lat'], _state['lon'], _state['alt']))
_flight_segment = "LANDED"
return _stats
#print(_flight_segment)
return _stats
def calculate_predictor_error(predictions, landing_time, lat, lon, alt):
""" Process a list of predictions, and determine the landing position error for each one """
_output = []
_landing = (lat, lon, alt)
for _predict in predictions:
_predict_time = _predict['log_time']
# Append on a timezone indicator if the time doesn't have one.
if _predict_time.endswith('Z') or _predict_time.endswith('+00:00'):
pass
else:
_predict_time += "Z"
if landing_time != None:
if parse(_predict_time) > (landing_time-datetime.timedelta(0,30)):
break
_predict_altitude = _predict['pred_path'][0][2]
_predict_landing = (_predict['pred_landing'][0], _predict['pred_landing'][1], _predict['pred_landing'][2])
_pos_info = position_info(_landing, _predict_landing)
logging.debug("Prediction %s: Altitude %d, Predicted Landing: %.4f, %.4f Prediction Error: %.1f km, %s" % (
_predict_time,
int(_predict_altitude),
_predict['pred_landing'][0],
_predict['pred_landing'][1],
(_pos_info['great_circle_distance']/1000.0),
bearing_to_cardinal(_pos_info['bearing'])
))
_output.append([
parse(_predict_time),
_pos_info['great_circle_distance']/1000.0,
_pos_info['bearing'],
_predict_altitude
])
return _output
def calculate_abort_error(predictions, landing_time, lat, lon, alt):
""" Process a list of predictions, and determine the landing position error for each one """
_output = []
_landing = (lat, lon, alt)
for _predict in predictions:
# Check there is an abort prediction available.
if len(_predict['abort_landing']) == 0:
continue
_predict_time = _predict['log_time']
# Append on a timezone indicator if the time doesn't have one.
if _predict_time.endswith('Z') or _predict_time.endswith('+00:00'):
pass
else:
_predict_time += "Z"
if landing_time != None:
if parse(_predict_time) > (landing_time-datetime.timedelta(0,30)):
break
_predict_altitude = _predict['abort_path'][0][2]
_predict_landing = (_predict['abort_landing'][0], _predict['abort_landing'][1], _predict['abort_landing'][2])
_pos_info = position_info(_landing, _predict_landing)
logging.debug("Abort Prediction %s: Altitude %d, Predicted Landing: %.4f, %.4f Prediction Error: %.1f km, %s" % (
_predict_time,
int(_predict_altitude),
_predict['abort_landing'][0],
_predict['abort_landing'][1],
(_pos_info['great_circle_distance']/1000.0),
bearing_to_cardinal(_pos_info['bearing'])
))
_output.append([
parse(_predict_time),
_pos_info['great_circle_distance']/1000.0,
_pos_info['bearing'],
_predict_altitude
])
return _output
def plot_predictor_error(flight_stats, predictor_errors, abort_predictor_errors=None, callsign = ""):
# Get launch time.
_launch_time = flight_stats['launch'][0]
# Generate datasets of time-since-launch and altitude.
_flight_time = []
_flight_alt = []
for _entry in flight_stats['positions']:
_ft = (_entry[0]-_launch_time).total_seconds()/60.0
if _ft > 0:
_flight_time.append(_ft)
_flight_alt.append(_entry[3])
# Generate datasets of time-since-launch and altitude.
_predict_time = []
_predict_alt = []
_predict_error = []
for _entry in predictor_errors:
_ft = (_entry[0]-_launch_time).total_seconds()/60.0
if _ft > 0:
_predict_time.append(_ft)
_predict_error.append(_entry[1])
_predict_alt.append(_entry[3])
# Altitude vs Time
plt.figure()
plt.plot(_flight_time, _flight_alt)
plt.grid()
plt.xlabel("Time (minutes)")
plt.ylabel("Altitude (metres)")
plt.title("Flight Profile - %s" % callsign)
# Prediction error vs time.
plt.figure()
plt.plot(_predict_time, _predict_error, label='Full Flight')
if abort_predictor_errors != None:
_abort_predict_time = []
_abort_predict_error = []
for _entry in abort_predictor_errors:
_ft = (_entry[0]-_launch_time).total_seconds()/60.0
if _ft > 0:
_abort_predict_time.append(_ft)
_abort_predict_error.append(_entry[1])
plt.plot(_abort_predict_time, _abort_predict_error, label='Abort Prediction')
plt.legend()
plt.xlabel("Time (minutes)")
plt.ylabel("Landing Prediction Error (km)")
plt.title("Landing Prediction Error - %s" % callsign)
plt.grid()
plt.figure()
_peak_idx = np.argmax(_predict_alt)
plt.plot(_predict_error[_peak_idx:], _predict_alt[_peak_idx:])
plt.xlabel("Prediction error (km)")
plt.ylabel("Flight altitude (m)")
plt.title("Landing Prediction Error - %s" % callsign)
plt.grid()
def plot_wind_trace(stats, title="", gfs_file=None, landing=None, ascent=True):
""" Plot the wind trace for the descent part of the flight """
_altitude = stats['altitudes']
_speed = stats['speeds']
_heading = stats['headings']
# Find peak altitude
_peak_idx = np.argmax(_altitude)
if ascent:
# Only use descent data
_altitude = np.array(_altitude[:_peak_idx])
_speed = np.array(_speed[:_peak_idx])
_heading = np.array(_heading[:_peak_idx])
else:
# Only use descent data
_altitude = np.array(_altitude[_peak_idx:])
_speed = np.array(_speed[_peak_idx:])
_heading = np.array(_heading[_peak_idx:])
if gfs_file is not None:
# Read in supplied GFS file.
_gfs = read_cusf_gfs(gfs_file)
logging.info("Read in GFS data for time %s." % _gfs['timestamp'].isoformat())
_lat_idx = np.argmin(np.abs(_gfs['latitudes']-landing[0]))
_lon_idx = np.argmin(np.abs(_gfs['longitudes']-landing[1]))
_gfs_alts = _gfs['data'][:,_lat_idx, _lon_idx][:,0]
_gfs_speed = _gfs['data'][:,_lat_idx, _lon_idx][:,3]
_gfs_heading = _gfs['data'][:,_lat_idx, _lon_idx][:,4]
# Speed plot
plt.figure()
plt.plot(_speed, _altitude, label=title)
if gfs_file is not None:
plt.plot(_gfs_speed, _gfs_alts, label='GFS')
plt.ylabel("Altitude (m)")
plt.xlabel("Absolute Speed (m/s)")
plt.title("Wind Speed - " + title)
plt.grid()
plt.legend()
plt.figure()
# Plot actual data
plt.plot((_heading+180.0)%360.0, _altitude, label=title)
if gfs_file is not None:
plt.plot(_gfs_heading, _gfs_alts, label='GFS')
plt.ylabel("Altitude (m)")
plt.xlabel("Wind Heading (Degrees True)")
plt.title("Wind Heading - " + title)
plt.grid()
plt.legend()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("filename", type=str, help="Input log file.")
parser.add_argument("-c", "--config", type=str, default="horusmapper.cfg", help="Configuration file.")
parser.add_argument("-v", "--verbose", action="store_true", default=False, help="Verbose output.")
parser.add_argument("--predict-error", action="store_true", default=False, help="Calculate Prediction Error.")
parser.add_argument("--abort-predict-error", action="store_true", default=False, help="Calculate Abort Prediction Error.")
parser.add_argument("--landing-lat", type=float, default=None, help="Override Landing Latitude")
parser.add_argument("--landing-lon", type=float, default=None, help="Override Landing Longitude")
parser.add_argument("--wind-trace", action="store_true", default=False, help="Plot wind trace.")
parser.add_argument("--gfs-file", type=str, default=None, help="Overlay GFS data on wind trace.")
parser.add_argument("--csv-dump", type=str, default=None, help="Dump telemetry to CSV file.")
args = parser.parse_args()
# Configure logging
if args.verbose:
_log_level = logging.DEBUG
else:
_log_level = logging.INFO
logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', stream=sys.stdout, level=_log_level)
_log_entries = read_file(args.filename)
_car, _telemetry = extract_data(_log_entries, csv_dump=args.csv_dump)
for _call in _telemetry:
logging.info("Processing Callsign: %s" % _call)
_stats = flight_stats(_telemetry[_call]['telemetry'])
if ('landing' in _stats) and ('launch' in _stats):
_total_flight = position_info((_stats['launch'][1],_stats['launch'][2],_stats['launch'][3]),(_stats['landing'][1], _stats['landing'][2], _stats['landing'][3]))
logging.info("%s Flight Distance: %.2f km" % (_call, _total_flight['great_circle_distance']/1000.0))
if args.predict_error:
if (args.landing_lat) != None and (args.landing_lon != None):
_predict_errors = calculate_predictor_error(_telemetry[_call]['predictions'], None, args.landing_lat, args.landing_lon, 0)
if args.abort_predict_error:
_abort_predict_errors = calculate_abort_error(_telemetry[_call]['predictions'], None, args.landing_lat, args.landing_lon, 0)
else:
_abort_predict_errors = None
plot_predictor_error(_stats, _predict_errors, _abort_predict_errors, _call)
plot_wind_trace(_stats, title=_call)
elif 'landing' in _stats:
_time = _stats['landing'][0]
_lat = _stats['landing'][1]
_lon = _stats['landing'][2]
_alt = _stats['landing'][3]
_predict_errors = calculate_predictor_error(_telemetry[_call]['predictions'], _time, _lat, _lon, _alt)
if args.abort_predict_error:
_abort_predict_errors = calculate_abort_error(_telemetry[_call]['predictions'], _time, _lat, _lon, _alt)
else:
_abort_predict_errors = None
plot_predictor_error(_stats, _predict_errors, _abort_predict_errors, _call)
plot_wind_trace(_stats, title=_call, gfs_file=args.gfs_file, landing=[_lat, _lon])
else:
logging.error("No landing position available.")
if args.predict_error or args.wind_trace:
plt.show()