-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmulti_trainer.py
574 lines (495 loc) · 21.3 KB
/
multi_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
"""
PyTorch's policy class used for PPO.
"""
# Copyright (c) 2023.
# ProrokLab (https://www.proroklab.org/)
# All rights reserved.
import logging
from abc import ABC
from typing import Dict
from typing import List, Optional, Union
from typing import Type
import gym
import numpy as np
import ray
from ray.rllib.agents.ppo import PPOTrainer
from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.ppo import PPOTorchPolicy
from ray.rllib.algorithms.ppo.ppo_tf_policy import validate_config
from ray.rllib.evaluation import Episode
from ray.rllib.evaluation.postprocessing import Postprocessing, compute_advantages
from ray.rllib.execution import synchronous_parallel_sample
from ray.rllib.execution.common import (
_check_sample_batch_type,
)
from ray.rllib.execution.train_ops import (
train_one_step,
multi_gpu_train_one_step,
)
from ray.rllib.models import ModelV2, ActionDistribution
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import (
SampleBatch,
DEFAULT_POLICY_ID,
concat_samples,
)
from ray.rllib.policy.torch_mixins import (
LearningRateSchedule,
KLCoeffMixin,
EntropyCoeffSchedule,
)
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.metrics import (
NUM_AGENT_STEPS_SAMPLED,
NUM_ENV_STEPS_SAMPLED,
SYNCH_WORKER_WEIGHTS_TIMER,
)
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.torch_utils import (
apply_grad_clipping,
)
from ray.rllib.utils.torch_utils import (
warn_if_infinite_kl_divergence,
explained_variance,
sequence_mask,
)
from ray.rllib.utils.typing import AgentID, TensorType, ResultDict
from ray.rllib.utils.typing import PolicyID, SampleBatchType
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class InvalidActionSpace(Exception):
"""Raised when the action space is invalid"""
pass
def standardized(array: np.ndarray):
"""Normalize the values in an array.
Args:
array (np.ndarray): Array of values to normalize.
Returns:
array with zero mean and unit standard deviation.
"""
return (array - array.mean(axis=0, keepdims=True)) / array.std(
axis=0, keepdims=True
).clip(min=1e-4)
def standardize_fields(samples: SampleBatchType, fields: List[str]) -> SampleBatchType:
"""Standardize fields of the given SampleBatch"""
_check_sample_batch_type(samples)
wrapped = False
if isinstance(samples, SampleBatch):
samples = samples.as_multi_agent()
wrapped = True
for policy_id in samples.policy_batches:
batch = samples.policy_batches[policy_id]
for field in fields:
if field in batch:
batch[field] = standardized(batch[field])
if wrapped:
samples = samples.policy_batches[DEFAULT_POLICY_ID]
return samples
def compute_gae_for_sample_batch(
policy: Policy,
sample_batch: SampleBatch,
other_agent_batches: Optional[Dict[AgentID, SampleBatch]] = None,
episode: Optional[Episode] = None,
) -> SampleBatch:
"""Adds GAE (generalized advantage estimations) to a trajectory.
The trajectory contains only data from one episode and from one agent.
- If `config.batch_mode=truncate_episodes` (default), sample_batch may
contain a truncated (at-the-end) episode, in case the
`config.rollout_fragment_length` was reached by the sampler.
- If `config.batch_mode=complete_episodes`, sample_batch will contain
exactly one episode (no matter how long).
New columns can be added to sample_batch and existing ones may be altered.
Args:
policy (Policy): The Policy used to generate the trajectory
(`sample_batch`)
sample_batch (SampleBatch): The SampleBatch to postprocess.
other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional
dict of AgentIDs mapping to other agents' trajectory data (from the
same episode). NOTE: The other agents use the same policy.
episode (Optional[MultiAgentEpisode]): Optional multi-agent episode
object in which the agents operated.
Returns:
SampleBatch: The postprocessed, modified SampleBatch (or a new one).
"""
n_agents = len(policy.action_space)
if sample_batch[SampleBatch.INFOS].dtype == "float32":
# The trajectory view API will pass populate the info dict with a np.zeros((ROLLOUT_SIZE,))
# array in the first call, in that case the dtype will be float32, and we
# ignore it by assignining it to all agents
samplebatch_infos_rewards = concat_samples(
[
SampleBatch(
{
str(i): sample_batch[SampleBatch.REWARDS].copy()
for i in range(n_agents)
}
)
]
)
else:
# For regular calls, we extract the rewards from the info
# dict into the samplebatch_infos_rewards dict, which now holds the rewards
# for all agents as dict.
# sample_batch[SampleBatch.INFOS] = list of len ROLLOUT_SIZE of which every element is
# {'rewards': {0: -0.077463925, 1: -0.0029145998, 2: -0.08233316}} if there are 3 agents
samplebatch_infos_rewards = concat_samples(
[
SampleBatch({str(k): [np.float32(v)] for k, v in s["rewards"].items()})
for s in sample_batch[SampleBatch.INFOS]
# s = {'rewards': {0: -0.077463925, 1: -0.0029145998, 2: -0.08233316}} if there are 3 agents
]
)
# samplebatch_infos_rewards = SampleBatch(ROLLOUT_SIZE: ['0', '1', '2']) if there are 3 agents
# (i.e. it has ROLLOUT_SIZE entries with keys '0','1','2')
if not isinstance(policy.action_space, gym.spaces.tuple.Tuple):
raise InvalidActionSpace("Expect tuple action space")
keys_to_overwirte = [
SampleBatch.REWARDS,
SampleBatch.VF_PREDS,
Postprocessing.ADVANTAGES,
Postprocessing.VALUE_TARGETS,
]
original_batch = sample_batch.copy()
# We prepare the sample batch to contain the agent batches
for k in keys_to_overwirte:
sample_batch[k] = np.zeros((len(original_batch), n_agents), dtype=np.float32)
if original_batch[SampleBatch.DONES][-1]:
all_values = None
else:
input_dict = original_batch.get_single_step_input_dict(
policy.model.view_requirements, index="last"
)
all_values = policy._value(**input_dict)
# Create the sample_batch for each agent
for key in samplebatch_infos_rewards.keys():
agent_index = int(key)
sample_batch_agent = original_batch.copy()
sample_batch_agent[SampleBatch.REWARDS] = samplebatch_infos_rewards[key]
sample_batch_agent[SampleBatch.VF_PREDS] = original_batch[SampleBatch.VF_PREDS][
:, agent_index
]
if all_values is None:
last_r = 0.0
# Trajectory has been truncated -> last r=VF estimate of last obs.
else:
last_r = (
all_values[agent_index].item()
if policy.config["use_gae"]
else all_values
)
# Adds the policy logits, VF preds, and advantages to the batch,
# using GAE ("generalized advantage estimation") or not.
sample_batch_agent = compute_advantages(
sample_batch_agent,
last_r,
policy.config["gamma"],
policy.config["lambda"],
use_gae=policy.config["use_gae"],
use_critic=policy.config.get("use_critic", True),
)
for k in keys_to_overwirte:
sample_batch[k][:, agent_index] = sample_batch_agent[k]
return sample_batch
def ppo_surrogate_loss(
policy: Policy,
model: ModelV2,
dist_class: Type[ActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
"""Constructs the loss for Proximal Policy Objective.
Args:
policy (Policy): The Policy to calculate the loss for.
model (ModelV2): The Model to calculate the loss for.
dist_class (Type[ActionDistribution]): The action distr. class.
train_batch (SampleBatch): The training data.
Returns:
Union[TensorType, List[TensorType]]: A single loss tensor or a list
of loss tensors.
"""
logits, state = model(train_batch)
# logits has shape (BATCH, num_agents * num_outputs_per_agent)
curr_action_dist = dist_class(logits, model)
# RNN case: Mask away 0-padded chunks at end of time axis.
if state:
B = len(train_batch[SampleBatch.SEQ_LENS])
max_seq_len = logits.shape[0] // B
mask = sequence_mask(
train_batch[SampleBatch.SEQ_LENS],
max_seq_len,
time_major=model.is_time_major(),
)
mask = torch.reshape(mask, [-1])
num_valid = torch.sum(mask)
def reduce_mean_valid(t):
return torch.sum(t[mask]) / num_valid
# non-RNN case: No masking.
else:
mask = None
reduce_mean_valid = torch.mean
prev_action_dist = dist_class(train_batch[SampleBatch.ACTION_DIST_INPUTS], model)
# train_batch[SampleBatch.ACTIONS] has shape (BATCH, num_agents * action_size)
logp_ratio = torch.exp(
curr_action_dist.logp(train_batch[SampleBatch.ACTIONS])
- train_batch[SampleBatch.ACTION_LOGP]
)
use_kl = policy.config["kl_coeff"] > 0.0
if use_kl:
action_kl = prev_action_dist.kl(curr_action_dist)
else:
action_kl = torch.tensor(0.0, device=logp_ratio.device)
curr_entropies = curr_action_dist.entropy()
# Compute a value function loss.
if policy.config["use_critic"]:
value_fn_out = model.value_function()
else:
value_fn_out = torch.tensor(0.0, device=logp_ratio.device)
loss_data = []
n_agents = len(policy.action_space)
for i in range(n_agents):
surrogate_loss = torch.min(
train_batch[Postprocessing.ADVANTAGES][..., i] * logp_ratio[..., i],
train_batch[Postprocessing.ADVANTAGES][..., i]
* torch.clamp(
logp_ratio[..., i],
1 - policy.config["clip_param"],
1 + policy.config["clip_param"],
),
)
# Compute a value function loss.
if policy.config["use_critic"]:
agent_value_fn_out = value_fn_out[..., i]
vf_loss = torch.pow(
agent_value_fn_out - train_batch[Postprocessing.VALUE_TARGETS][..., i],
2.0,
)
vf_loss_clipped = torch.clamp(vf_loss, 0, policy.config["vf_clip_param"])
mean_vf_loss = reduce_mean_valid(vf_loss_clipped)
# Ignore the value function.
else:
agent_value_fn_out = torch.tensor(0.0).to(surrogate_loss.device)
vf_loss_clipped = mean_vf_loss = torch.tensor(0.0).to(surrogate_loss.device)
total_loss = (
-surrogate_loss
+ policy.config["vf_loss_coeff"] * vf_loss_clipped
- policy.entropy_coeff * curr_entropies[..., i]
)
# Add mean_kl_loss if necessary.
if use_kl:
mean_kl_loss = reduce_mean_valid(action_kl[..., i])
total_loss += policy.kl_coeff * mean_kl_loss
# TODO smorad: should we do anything besides warn? Could discard KL term
# for this update
warn_if_infinite_kl_divergence(policy, mean_kl_loss)
else:
mean_kl_loss = torch.tensor(0.0, device=logp_ratio.device)
total_loss = reduce_mean_valid(total_loss)
mean_policy_loss = reduce_mean_valid(-surrogate_loss)
mean_entropy = reduce_mean_valid(curr_entropies[..., i])
vf_explained_var = explained_variance(
train_batch[Postprocessing.VALUE_TARGETS][..., i], agent_value_fn_out
)
# Store stats in policy for stats_fn.
loss_data.append(
{
"total_loss": total_loss,
"mean_policy_loss": mean_policy_loss,
"mean_vf_loss": mean_vf_loss,
"mean_entropy": mean_entropy,
"mean_kl": mean_kl_loss,
"vf_explained_var": vf_explained_var,
}
)
aggregation = torch.mean
total_loss = aggregation(torch.stack([o["total_loss"] for o in loss_data]))
model.tower_stats["total_loss"] = total_loss
model.tower_stats["mean_policy_loss"] = aggregation(
torch.stack([o["mean_policy_loss"] for o in loss_data])
)
model.tower_stats["mean_vf_loss"] = aggregation(
torch.stack([o["mean_vf_loss"] for o in loss_data])
)
model.tower_stats["vf_explained_var"] = aggregation(
torch.stack([o["vf_explained_var"] for o in loss_data])
)
model.tower_stats["mean_entropy"] = aggregation(
torch.stack([o["mean_entropy"] for o in loss_data])
)
model.tower_stats["mean_kl_loss"] = aggregation(
torch.stack([o["mean_kl"] for o in loss_data])
)
return total_loss
class MultiAgentValueNetworkMixin:
"""Assigns the `_value()` method to a TorchPolicy.
This way, Policy can call `_value()` to get the current VF estimate on a
single(!) observation (as done in `postprocess_trajectory_fn`).
Note: When doing this, an actual forward pass is being performed.
This is different from only calling `model.value_function()`, where
the result of the most recent forward pass is being used to return an
already calculated tensor.
"""
def __init__(self, config):
# When doing GAE, we need the value function estimate on the
# observation.
if config["use_gae"]:
# Input dict is provided to us automatically via the Model's
# requirements. It's a single-timestep (last one in trajectory)
# input_dict.
def value(**input_dict):
"""This is exactly the as in PPOTorchPolicy,
but that one calls .item() on self.model.value_function()[0],
which will not work for us since our value function returns
multiple values. Instead, we call .item() in
compute_gae_for_sample_batch above.
"""
input_dict = SampleBatch(input_dict)
input_dict = self._lazy_tensor_dict(input_dict)
model_out, _ = self.model(input_dict)
# [0] = remove the batch dim.
return self.model.value_function()[0]
# When not doing GAE, we do not require the value function's output.
# When not doing GAE, we do not require the value function's output.
else:
def value(*args, **kwargs):
return 0.0
self._value = value
class MultiPPOTorchPolicy(PPOTorchPolicy, MultiAgentValueNetworkMixin):
def __init__(self, observation_space, action_space, config):
config = dict(ray.rllib.algorithms.ppo.ppo.PPOConfig().to_dict(), **config)
# TODO: Move into Policy API, if needed at all here. Why not move this into
# `PPOConfig`?.
validate_config(config)
TorchPolicyV2.__init__(
self,
observation_space,
action_space,
config,
max_seq_len=config["model"]["max_seq_len"],
)
# Only difference from ray code
MultiAgentValueNetworkMixin.__init__(self, config)
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
EntropyCoeffSchedule.__init__(
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
)
KLCoeffMixin.__init__(self, config)
self.grad_gnorm = 0
# TODO: Don't require users to call this manually.
self._initialize_loss_from_dummy_batch()
@override(PPOTorchPolicy)
def loss(self, model, dist_class, train_batch):
return ppo_surrogate_loss(self, model, dist_class, train_batch)
@override(PPOTorchPolicy)
def postprocess_trajectory(
self, sample_batch, other_agent_batches=None, episode=None
):
# Do all post-processing always with no_grad().
# Not using this here will introduce a memory leak
# in torch (issue #6962).
# TODO: no_grad still necessary?
with torch.no_grad():
return compute_gae_for_sample_batch(
self, sample_batch, other_agent_batches, episode
)
@override(PPOTorchPolicy)
def extra_grad_process(self, local_optimizer, loss):
grad_gnorm = apply_grad_clipping(self, local_optimizer, loss)
if "grad_gnorm" in grad_gnorm:
self.grad_gnorm = grad_gnorm["grad_gnorm"]
return grad_gnorm
@override(TorchPolicyV2)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
return convert_to_numpy(
{
"cur_kl_coeff": self.kl_coeff,
"cur_lr": self.cur_lr,
"total_loss": torch.mean(
torch.stack(self.get_tower_stats("total_loss"))
),
"policy_loss": torch.mean(
torch.stack(self.get_tower_stats("mean_policy_loss"))
),
"vf_loss": torch.mean(
torch.stack(self.get_tower_stats("mean_vf_loss"))
),
"vf_explained_var": torch.mean(
torch.stack(self.get_tower_stats("vf_explained_var"))
),
"kl": torch.mean(torch.stack(self.get_tower_stats("mean_kl_loss"))),
"entropy": torch.mean(
torch.stack(self.get_tower_stats("mean_entropy"))
),
"entropy_coeff": self.entropy_coeff,
"grad_gnorm": self.grad_gnorm,
}
)
class MultiPPOTrainer(PPOTrainer, ABC):
@override(PPOTrainer)
def get_default_policy_class(self, config):
return MultiPPOTorchPolicy
@override(PPOTrainer)
def training_step(self) -> ResultDict:
# Collect SampleBatches from sample workers until we have a full batch.
if self._by_agent_steps:
assert False
train_batch = synchronous_parallel_sample(
worker_set=self.workers, max_agent_steps=self.config["train_batch_size"]
)
else:
train_batch = synchronous_parallel_sample(
worker_set=self.workers, max_env_steps=self.config["train_batch_size"]
)
train_batch = train_batch.as_multi_agent()
self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps()
self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps()
# Standardize advantage
train_batch = standardize_fields(train_batch, ["advantages"])
# Train
if self.config["simple_optimizer"]:
assert False
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
global_vars = {
"timestep": self._counters[NUM_AGENT_STEPS_SAMPLED],
}
# Update weights - after learning on the local worker - on all remote
# workers.
if self.workers.remote_workers():
with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]:
self.workers.sync_weights(global_vars=global_vars)
# For each policy: update KL scale and warn about possible issues
for policy_id, policy_info in train_results.items():
# Update KL loss with dynamic scaling
# for each (possibly multiagent) policy we are training
kl_divergence = policy_info[LEARNER_STATS_KEY].get("kl")
self.get_policy(policy_id).update_kl(kl_divergence)
# Warn about excessively high value function loss
scaled_vf_loss = (
self.config["vf_loss_coeff"] * policy_info[LEARNER_STATS_KEY]["vf_loss"]
)
policy_loss = policy_info[LEARNER_STATS_KEY]["policy_loss"]
if scaled_vf_loss > 100:
logger.warning(
"The magnitude of your value function loss for policy: {} is "
"extremely large ({}) compared to the policy loss ({}). This "
"can prevent the policy from learning. Consider scaling down "
"the VF loss by reducing vf_loss_coeff, or disabling "
"vf_share_layers.".format(policy_id, scaled_vf_loss, policy_loss)
)
# Warn about bad clipping configs.
train_batch.policy_batches[policy_id].set_get_interceptor(None)
mean_reward = train_batch.policy_batches[policy_id]["rewards"].mean()
if mean_reward > self.config["vf_clip_param"]:
self.warned_vf_clip = True
logger.warning(
f"The mean reward returned from the environment is {mean_reward}"
f" but the vf_clip_param is set to {self.config['vf_clip_param']}."
f" Consider increasing it for policy: {policy_id} to improve"
" value function convergence."
)
# Update global vars on local worker as well.
self.workers.local_worker().set_global_vars(global_vars)
return train_results