forked from jcjohnson/torch-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVanillaRNN_test.lua
201 lines (159 loc) · 5.33 KB
/
VanillaRNN_test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
require 'torch'
require 'nn'
local gradcheck = require 'util.gradcheck'
require 'VanillaRNN'
local tests = torch.TestSuite()
local tester = torch.Tester()
local function check_size(x, dims)
tester:asserteq(x:dim(), #dims)
for i, d in ipairs(dims) do
tester:assert(x:size(i) == d)
end
end
local function forwardTestFactory(N, T, D, H, dtype)
dtype = dtype or 'torch.DoubleTensor'
return function()
local x = torch.randn(N, T, D):type(dtype)
local h0 = torch.randn(N, H):type(dtype)
local rnn = nn.VanillaRNN(D, H):type(dtype)
local Wx = rnn.weight[{{1, D}}]:clone()
local Wh = rnn.weight[{{D + 1, D + H}}]:clone()
local b = rnn.bias:view(1, H):expand(N, H)
local h_naive = torch.zeros(N, T, H):type(dtype)
local prev_h = h0
for t = 1, T do
local a = torch.mm(x[{{}, t}], Wx)
a = a + torch.mm(prev_h, Wh)
a = a + b
local next_h = torch.tanh(a)
h_naive[{{}, t}] = next_h:clone()
prev_h = next_h
end
local h = rnn:forward{h0, x}
tester:assertTensorEq(h, h_naive, 1e-7)
end
end
tests.forwardDoubleTest = forwardTestFactory(3, 4, 5, 6)
tests.forwardSingletonTest = forwardTestFactory(10, 1, 2, 3)
tests.forwardFloatTest = forwardTestFactory(3, 4, 5, 6, 'torch.FloatTensor')
function gradCheckTestFactory(N, T, D, H, dtype)
dtype = dtype or 'torch.DoubleTensor'
return function()
local x = torch.randn(N, T, D)
local h0 = torch.randn(N, H)
local rnn = nn.VanillaRNN(D, H)
local h = rnn:forward{h0, x}
local dh = torch.randn(#h)
rnn:zeroGradParameters()
local dh0, dx = unpack(rnn:backward({h0, x}, dh))
local dw = rnn.gradWeight:clone()
local db = rnn.gradBias:clone()
local function fx(x) return rnn:forward{h0, x} end
local function fh0(h0) return rnn:forward{h0, x} end
local function fw(w)
local old_w = rnn.weight
rnn.weight = w
local out = rnn:forward{h0, x}
rnn.weight = old_w
return out
end
local function fb(b)
local old_b = rnn.bias
rnn.bias = b
local out = rnn:forward{h0, x}
rnn.bias = old_b
return out
end
local dx_num = gradcheck.numeric_gradient(fx, x, dh)
local dh0_num = gradcheck.numeric_gradient(fh0, h0, dh)
local dw_num = gradcheck.numeric_gradient(fw, rnn.weight, dh)
local db_num = gradcheck.numeric_gradient(fb, rnn.bias, dh)
local dx_error = gradcheck.relative_error(dx_num, dx)
local dh0_error = gradcheck.relative_error(dh0_num, dh0)
local dw_error = gradcheck.relative_error(dw_num, dw)
local db_error = gradcheck.relative_error(db_num, db)
tester:assert(dx_error < 1e-5)
tester:assert(dh0_error < 1e-5)
tester:assert(dw_error < 1e-5)
tester:assert(db_error < 1e-5)
end
end
tests.gradCheckTest = gradCheckTestFactory(2, 3, 4, 5)
--[[
function tests.scaleTest()
local N, T, D, H = 4, 5, 6, 7
local rnn = nn.VanillaRNN(D, H)
rnn:zeroGradParameters()
local h0 = torch.randn(N, H)
local x = torch.randn(N, T, D)
local dout = torch.randn(N, T, H)
-- Run forward / backward with scale = 0
rnn:forward{h0, x}
rnn:backward({h0, x}, dout, 0)
tester:asserteq(rnn.gradWeight:sum(), 0)
tester:asserteq(rnn.gradBias:sum(), 0)
-- Run forward / backward with scale = 2.0 and record gradients
rnn:forward{h0, x}
rnn:backward({h0, x}, dout, 2.0)
local dw2 = rnn.gradWeight:clone()
local db2 = rnn.gradBias:clone()
-- Run forward / backward with scale = 4.0 and record gradients
rnn:zeroGradParameters()
rnn:forward{h0, x}
rnn:backward({h0, x}, dout, 4.0)
local dw4 = rnn.gradWeight:clone()
local db4 = rnn.gradBias:clone()
-- Gradients after the 4.0 step should be twice as big
tester:assertTensorEq(torch.cdiv(dw4, dw2), torch.Tensor(#dw2):fill(2), 1e-6)
tester:assertTensorEq(torch.cdiv(db4, db2), torch.Tensor(#db2):fill(2), 1e-6)
end
--]]
--[[
Check that everything works when we don't pass an initial hidden state.
By default this should zero the hidden state on each forward pass.
--]]
function tests.noInitialStateTest()
local N, T, D, H = 4, 5, 6, 7
local rnn = nn.VanillaRNN(D, H)
-- Run multiple forward passes to make sure the state is zero'd each time
for t = 1, 3 do
local x = torch.randn(N, T, D)
local dout = torch.randn(N, T, H)
local out = rnn:forward(x)
tester:assert(torch.isTensor(out))
check_size(out, {N, T, H})
local din = rnn:backward(x, dout)
tester:assert(torch.isTensor(din))
check_size(din, {N, T, D})
tester:assert(rnn.h0:sum() == 0)
end
end
--[[
If we set rnn.remember_states then the initial hidden state will the the
final hidden state from the previous forward pass. Make sure this works!
--]]
function tests.rememberStateTest()
local N, T, D, H = 5, 6, 7, 8
local rnn = nn.VanillaRNN(D, H)
rnn.remember_states = true
local final_h
for t = 1, 3 do
local x = torch.randn(N, T, D)
local dout = torch.randn(N, T, H)
local out = rnn:forward(x)
local din = rnn:backward(x, dout)
if t > 1 then
tester:assertTensorEq(final_h, rnn.h0, 0)
end
final_h = out[{{}, T}]:clone()
end
-- After calling resetStates() the initial hidden state should be zero
rnn:resetStates()
local x = torch.randn(N, T, D)
local dout = torch.randn(N, T, H)
rnn:forward(x)
rnn:backward(x, dout)
tester:assertTensorEq(rnn.h0, torch.zeros(N, H), 0)
end
tester:add(tests)
tester:run()