-
Notifications
You must be signed in to change notification settings - Fork 0
/
mungocactus.tikz
45 lines (44 loc) · 15 KB
/
mungocactus.tikz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\begin{tikzpicture}
\pgfplotsset{
compat=newest,
scaled y ticks=false
}
\begin{axis}[
very thick=true,
no markers=true,
axis x line*=bottom,
axis y line*=left,
width=12cm,
height=16cm,
cycle list={%
{green, solid},
{blue, densely dashed},
{red, dashdotdotted},
{black, densely dotted},
{brown, loosely dashdotted}
},
xlabel near ticks=true,
ylabel near ticks=true,
xmin=0,
ymin=-1000,
legend pos=north west,
every axis legend/.append style={
cells={
anchor=west,
},
draw=none,
},
xmax=323,
ymax=22364.0,
%
]
\addplot coordinates {(0,1.0) (1,1.0) (2,1.0) (3,1.0) (4,1.0) (5,1.0) (6,1.0) (7,1.0) (8,1.0) (9,1.0) (10,1.0) (11,1.0) (12,1.0) (13,1.0) (14,1.0) (15,1.0) (16,1.0) (17,1.0) (18,1.0) (19,1.0) (20,1.0) (21,1.0) (22,1.0) (23,1.0) (24,1.0) (25,1.0) (26,1.0) (27,1.0) (28,1.0) (29,1.0) (30,1.0) (31,1.0) (32,1.0) (33,1.0) (34,1.0) (35,1.0) (36,1.0) (37,1.0) (38,1.0) (39,1.0) (40,1.0) (41,1.0) (42,1.0) (43,1.0) (44,1.0) (45,1.0) (46,1.0) (47,1.0) (48,1.0) (49,1.0) (50,1.0) (51,1.0) (52,1.0) (53,1.0) (54,1.0) (55,1.0) (56,1.0) (57,1.0) (58,1.0) (59,1.0) (60,1.0) (61,1.0) (62,1.0) (63,1.0) (64,1.0) (65,1.0) (66,1.0) (67,1.0) (68,1.0) (69,1.0) (70,1.0) (71,1.0) (72,1.0) (73,1.0) (74,1.0) (75,1.0) (76,1.0) (77,1.0) (78,1.0) (79,1.0) (80,1.0) (81,1.0) (82,1.0) (83,1.0) (84,1.0) (85,1.0) (86,1.0) (87,1.0) (88,1.0) (89,1.0) (90,3.0) (91,3.0) (92,5.0) (93,5.0) (94,7.0) (95,13.0) (96,15.0) (97,15.0) (98,15.0) (99,15.0) (100,15.0) (101,15.0) (102,15.0) (103,15.0) (104,31.0) (105,43.0) (106,43.0) (107,45.0) (108,45.0) (109,62.0) (110,68.0) (111,68.0) (112,68.0) (113,68.0) (114,68.0) (115,90.0) (116,141.0) (117,141.0) (118,149.0) (119,149.0) (120,149.0) (121,149.0) (122,149.0) (123,149.0) (124,149.0) (125,180.0) (126,180.0) (127,180.0) (128,180.0) (129,269.0) (130,269.0) (131,269.0) (132,269.0) (133,269.0) (134,284.0) (135,344.0) (136,344.0) (137,344.0) (138,344.0) (139,352.0) (140,360.0) (141,360.0) (142,360.0) (143,360.0) (144,360.0) (145,360.0) (146,360.0) (147,360.0) (148,486.0) (149,524.0) (150,524.0) (151,524.0) (152,524.0) (153,524.0) (154,561.0) (155,636.0) (156,636.0) (157,636.0) (158,636.0) (159,636.0) (160,636.0) (161,644.0) (162,651.0) (163,659.0) (164,681.0) (165,720.0) (166,720.0) (167,720.0) (168,720.0) (169,720.0) (170,720.0) (171,720.0) (172,720.0) (173,720.0) (174,720.0) (175,720.0) (176,720.0) (177,720.0) (178,720.0) (179,720.0) (180,720.0) (181,966.0) (182,966.0) (183,966.0) (184,966.0) (185,966.0) (186,989.0) (187,1034.0) (188,1034.0) (189,1034.0) (190,1034.0) (191,1034.0) (192,1041.0) (193,1056.0) (194,1056.0) (195,1056.0) (196,1056.0) (197,1056.0) (198,1079.0) (199,1079.0) (200,1079.0) (201,1079.0) (202,1079.0) (203,1086.0) (204,1086.0) (205,1124.0) (206,1184.0) (207,1221.0) (208,1259.0) (209,1259.0) (210,1259.0) (211,1259.0) (212,1274.0) (213,1341.0) (214,1364.0) (215,1364.0) (216,1364.0) (217,1364.0) (218,1440.0) (219,1440.0) (220,1440.0) (221,1440.0) (222,1440.0) (223,1440.0) (224,1440.0) (225,1440.0) (226,1440.0) (227,1440.0) (228,1440.0) (229,1440.0) (230,1440.0) (231,1440.0) (232,1440.0) (233,1440.0) (234,1440.0) (235,1440.0) (236,1440.0) (237,1440.0) (238,1440.0) (239,1440.0) (240,1440.0) (241,1440.0) (242,1440.0) (243,1440.0) (244,1986.0) (245,1986.0) (246,1986.0) (247,1986.0) (248,2024.0) (249,2024.0) (250,2031.0) (251,2039.0) (252,2076.0) (253,2136.0) (254,2369.0) (255,2406.0) (256,2406.0) (257,2406.0) (258,2826.0) (259,2826.0) (260,2834.0) (261,2834.0) (262,2880.0) (263,2880.0) (264,2880.0) (265,2880.0) (266,2880.0) (267,2880.0) (268,2880.0) (269,2880.0) (270,2880.0) (271,2880.0) (272,2880.0) (273,2880.0) (274,2880.0) (275,3996.0) (276,3996.0) (277,3996.0) (278,4071.0) (279,4071.0) (280,4071.0) (281,4319.0) (282,4319.0) (283,4319.0) (284,4349.0) (285,4409.0) (286,4409.0) (287,4454.0) (288,4949.0) (289,4949.0) (290,4949.0) (291,5399.0) (292,5760.0) (293,5760.0) (294,5760.0) (295,5760.0) (296,5760.0) (297,5760.0) (298,5760.0) (299,5760.0) (300,5760.0) (301,5760.0) (302,5760.0) (303,8691.0) (304,8691.0) (305,8871.0) (306,15854.0) (307,16056.0) (308,nan) (309,nan) (310,nan) (311,nan) (312,nan) (313,nan) (314,nan) (315,nan) (316,nan) (317,nan) (318,nan) (319,nan) (320,nan) (321,nan) (322,nan)};%
\addlegendentry{Seminator}%
\addplot coordinates {(0,1.0) (1,1.0) (2,1.0) (3,1.0) (4,1.0) (5,1.0) (6,1.0) (7,1.0) (8,1.0) (9,1.0) (10,1.0) (11,1.0) (12,1.0) (13,1.0) (14,1.0) (15,1.0) (16,1.0) (17,1.0) (18,1.0) (19,1.0) (20,3.0) (21,3.0) (22,3.0) (23,3.0) (24,5.0) (25,5.0) (26,5.0) (27,5.0) (28,5.0) (29,7.0) (30,7.0) (31,7.0) (32,7.0) (33,7.0) (34,7.0) (35,7.0) (36,7.0) (37,9.0) (38,9.0) (39,9.0) (40,9.0) (41,9.0) (42,9.0) (43,11.0) (44,11.0) (45,11.0) (46,11.0) (47,11.0) (48,11.0) (49,11.0) (50,11.0) (51,11.0) (52,13.0) (53,13.0) (54,13.0) (55,13.0) (56,13.0) (57,13.0) (58,13.0) (59,13.0) (60,13.0) (61,13.0) (62,13.0) (63,15.0) (64,15.0) (65,15.0) (66,15.0) (67,15.0) (68,15.0) (69,15.0) (70,15.0) (71,15.0) (72,15.0) (73,15.0) (74,15.0) (75,15.0) (76,15.0) (77,15.0) (78,15.0) (79,15.0) (80,15.0) (81,15.0) (82,15.0) (83,15.0) (84,15.0) (85,15.0) (86,15.0) (87,15.0) (88,15.0) (89,15.0) (90,15.0) (91,15.0) (92,31.0) (93,33.0) (94,41.0) (95,43.0) (96,43.0) (97,43.0) (98,45.0) (99,45.0) (100,45.0) (101,45.0) (102,45.0) (103,62.0) (104,62.0) (105,64.0) (106,68.0) (107,70.0) (108,72.0) (109,90.0) (110,90.0) (111,90.0) (112,90.0) (113,90.0) (114,90.0) (115,90.0) (116,141.0) (117,141.0) (118,172.0) (119,180.0) (120,180.0) (121,180.0) (122,180.0) (123,180.0) (124,180.0) (125,180.0) (126,180.0) (127,180.0) (128,180.0) (129,254.0) (130,276.0) (131,284.0) (132,284.0) (133,291.0) (134,299.0) (135,306.0) (136,352.0) (137,352.0) (138,360.0) (139,360.0) (140,360.0) (141,360.0) (142,360.0) (143,494.0) (144,494.0) (145,509.0) (146,516.0) (147,539.0) (148,539.0) (149,546.0) (150,561.0) (151,584.0) (152,599.0) (153,606.0) (154,629.0) (155,636.0) (156,666.0) (157,666.0) (158,681.0) (159,681.0) (160,689.0) (161,689.0) (162,720.0) (163,720.0) (164,720.0) (165,720.0) (166,720.0) (167,720.0) (168,720.0) (169,720.0) (170,720.0) (171,720.0) (172,720.0) (173,720.0) (174,720.0) (175,720.0) (176,966.0) (177,974.0) (178,974.0) (179,974.0) (180,1026.0) (181,1049.0) (182,1064.0) (183,1079.0) (184,1116.0) (185,1116.0) (186,1221.0) (187,1341.0) (188,1386.0) (189,1409.0) (190,1416.0) (191,1424.0) (192,1424.0) (193,1432.0) (194,1440.0) (195,1440.0) (196,1440.0) (197,1440.0) (198,1440.0) (199,1440.0) (200,1440.0) (201,1440.0) (202,1440.0) (203,1934.0) (204,1979.0) (205,2136.0) (206,2256.0) (207,2451.0) (208,2474.0) (209,2519.0) (210,2556.0) (211,2774.0) (212,2774.0) (213,2880.0) (214,2880.0) (215,2880.0) (216,2880.0) (217,2880.0) (218,2880.0) (219,2880.0) (220,2880.0) (221,2880.0) (222,3936.0) (223,3974.0) (224,4131.0) (225,4191.0) (226,4274.0) (227,4311.0) (228,4349.0) (229,4416.0) (230,4664.0) (231,5024.0) (232,5024.0) (233,5069.0) (234,5264.0) (235,5399.0) (236,5444.0) (237,5534.0) (238,5661.0) (239,5760.0) (240,5760.0) (241,5760.0) (242,5760.0) (243,5760.0) (244,5760.0) (245,5760.0) (246,5760.0) (247,5760.0) (248,7761.0) (249,7904.0) (250,7964.0) (251,8114.0) (252,8699.0) (253,8759.0) (254,8871.0) (255,11520.0) (256,11520.0) (257,11520.0) (258,15854.0) (259,16349.0) (260,nan) (261,nan) (262,nan) (263,nan) (264,nan) (265,nan) (266,nan) (267,nan) (268,nan) (269,nan) (270,nan) (271,nan) (272,nan) (273,nan) (274,nan) (275,nan) (276,nan) (277,nan) (278,nan) (279,nan) (280,nan) (281,nan) (282,nan) (283,nan) (284,nan) (285,nan) (286,nan) (287,nan) (288,nan) (289,nan) (290,nan) (291,nan) (292,nan) (293,nan) (294,nan) (295,nan) (296,nan) (297,nan) (298,nan) (299,nan) (300,nan) (301,nan) (302,nan) (303,nan) (304,nan) (305,nan) (306,nan) (307,nan) (308,nan) (309,nan) (310,nan) (311,nan) (312,nan) (313,nan) (314,nan) (315,nan) (316,nan) (317,nan) (318,nan) (319,nan) (320,nan) (321,nan) (322,nan)};%
\addlegendentry{Examples}%
\addplot coordinates {(0,1.0) (1,1.0) (2,1.0) (3,1.0) (4,1.0) (5,1.0) (6,1.0) (7,1.0) (8,1.0) (9,1.0) (10,1.0) (11,1.0) (12,1.0) (13,1.0) (14,1.0) (15,1.0) (16,1.0) (17,1.0) (18,1.0) (19,1.0) (20,1.0) (21,1.0) (22,1.0) (23,1.0) (24,1.0) (25,1.0) (26,1.0) (27,1.0) (28,1.0) (29,1.0) (30,1.0) (31,1.0) (32,1.0) (33,1.0) (34,1.0) (35,1.0) (36,1.0) (37,1.0) (38,1.0) (39,1.0) (40,1.0) (41,1.0) (42,1.0) (43,1.0) (44,1.0) (45,1.0) (46,1.0) (47,1.0) (48,1.0) (49,1.0) (50,3.0) (51,5.0) (52,5.0) (53,5.0) (54,5.0) (55,9.0) (56,11.0) (57,11.0) (58,13.0) (59,15.0) (60,15.0) (61,15.0) (62,15.0) (63,15.0) (64,15.0) (65,15.0) (66,15.0) (67,15.0) (68,15.0) (69,15.0) (70,15.0) (71,15.0) (72,15.0) (73,15.0) (74,15.0) (75,15.0) (76,15.0) (77,15.0) (78,15.0) (79,15.0) (80,15.0) (81,15.0) (82,15.0) (83,15.0) (84,15.0) (85,15.0) (86,15.0) (87,15.0) (88,15.0) (89,15.0) (90,15.0) (91,33.0) (92,33.0) (93,33.0) (94,33.0) (95,35.0) (96,37.0) (97,37.0) (98,37.0) (99,37.0) (100,43.0) (101,43.0) (102,45.0) (103,45.0) (104,45.0) (105,45.0) (106,88.0) (107,88.0) (108,88.0) (109,88.0) (110,88.0) (111,90.0) (112,180.0) (113,180.0) (114,180.0) (115,284.0) (116,284.0) (117,284.0) (118,284.0) (119,284.0) (120,284.0) (121,291.0) (122,291.0) (123,291.0) (124,291.0) (125,291.0) (126,314.0) (127,352.0) (128,352.0) (129,352.0) (130,352.0) (131,352.0) (132,352.0) (133,352.0) (134,360.0) (135,360.0) (136,360.0) (137,360.0) (138,360.0) (139,501.0) (140,501.0) (141,501.0) (142,501.0) (143,501.0) (144,501.0) (145,509.0) (146,509.0) (147,509.0) (148,509.0) (149,509.0) (150,539.0) (151,539.0) (152,539.0) (153,539.0) (154,539.0) (155,539.0) (156,539.0) (157,539.0) (158,554.0) (159,554.0) (160,554.0) (161,561.0) (162,576.0) (163,591.0) (164,591.0) (165,621.0) (166,666.0) (167,666.0) (168,681.0) (169,696.0) (170,696.0) (171,696.0) (172,696.0) (173,712.0) (174,720.0) (175,720.0) (176,720.0) (177,720.0) (178,720.0) (179,720.0) (180,720.0) (181,720.0) (182,720.0) (183,720.0) (184,720.0) (185,720.0) (186,720.0) (187,720.0) (188,720.0) (189,720.0) (190,720.0) (191,720.0) (192,720.0) (193,720.0) (194,720.0) (195,720.0) (196,720.0) (197,1004.0) (198,1004.0) (199,1004.0) (200,1064.0) (201,1094.0) (202,1124.0) (203,1124.0) (204,1124.0) (205,1124.0) (206,1124.0) (207,1169.0) (208,1169.0) (209,1169.0) (210,1169.0) (211,1206.0) (212,1229.0) (213,1229.0) (214,1229.0) (215,1229.0) (216,1281.0) (217,1281.0) (218,1440.0) (219,1440.0) (220,1440.0) (221,1440.0) (222,1440.0) (223,1440.0) (224,1440.0) (225,1440.0) (226,1440.0) (227,1440.0) (228,1926.0) (229,1979.0) (230,1979.0) (231,2286.0) (232,2286.0) (233,2331.0) (234,2331.0) (235,2369.0) (236,2511.0) (237,2556.0) (238,2880.0) (239,2880.0) (240,2880.0) (241,2880.0) (242,2880.0) (243,2880.0) (244,2880.0) (245,2880.0) (246,2880.0) (247,2880.0) (248,2880.0) (249,4064.0) (250,4064.0) (251,4064.0) (252,4064.0) (253,4311.0) (254,4979.0) (255,4979.0) (256,4979.0) (257,5069.0) (258,5369.0) (259,5369.0) (260,5369.0) (261,5369.0) (262,5444.0) (263,5579.0) (264,5579.0) (265,5616.0) (266,5616.0) (267,5616.0) (268,5616.0) (269,5760.0) (270,5760.0) (271,5760.0) (272,5760.0) (273,5760.0) (274,5760.0) (275,5760.0) (276,5760.0) (277,5760.0) (278,5760.0) (279,5760.0) (280,7799.0) (281,7799.0) (282,7799.0) (283,7964.0) (284,8174.0) (285,8174.0) (286,8174.0) (287,8699.0) (288,8729.0) (289,8729.0) (290,9066.0) (291,9066.0) (292,9066.0) (293,9291.0) (294,9291.0) (295,11520.0) (296,11520.0) (297,11520.0) (298,22364.0) (299,22364.0) (300,nan) (301,nan) (302,nan) (303,nan) (304,nan) (305,nan) (306,nan) (307,nan) (308,nan) (309,nan) (310,nan) (311,nan) (312,nan) (313,nan) (314,nan) (315,nan) (316,nan) (317,nan) (318,nan) (319,nan) (320,nan) (321,nan) (322,nan)};%
\addlegendentry{ePMC}%
\addplot coordinates {(0,1.0) (1,1.0) (2,1.0) (3,1.0) (4,1.0) (5,1.0) (6,1.0) (7,1.0) (8,1.0) (9,1.0) (10,3.0) (11,3.0) (12,3.0) (13,3.0) (14,3.0) (15,3.0) (16,5.0) (17,5.0) (18,5.0) (19,5.0) (20,5.0) (21,5.0) (22,5.0) (23,5.0) (24,5.0) (25,5.0) (26,5.0) (27,5.0) (28,5.0) (29,5.0) (30,5.0) (31,5.0) (32,5.0) (33,5.0) (34,5.0) (35,5.0) (36,7.0) (37,7.0) (38,7.0) (39,7.0) (40,7.0) (41,7.0) (42,7.0) (43,7.0) (44,7.0) (45,7.0) (46,7.0) (47,7.0) (48,7.0) (49,7.0) (50,7.0) (51,7.0) (52,7.0) (53,7.0) (54,7.0) (55,7.0) (56,7.0) (57,7.0) (58,7.0) (59,7.0) (60,7.0) (61,9.0) (62,9.0) (63,9.0) (64,9.0) (65,9.0) (66,9.0) (67,9.0) (68,9.0) (69,9.0) (70,9.0) (71,9.0) (72,9.0) (73,9.0) (74,9.0) (75,9.0) (76,11.0) (77,11.0) (78,11.0) (79,11.0) (80,11.0) (81,11.0) (82,11.0) (83,11.0) (84,13.0) (85,15.0) (86,15.0) (87,15.0) (88,15.0) (89,15.0) (90,43.0) (91,43.0) (92,43.0) (93,43.0) (94,43.0) (95,43.0) (96,45.0) (97,45.0) (98,45.0) (99,45.0) (100,45.0) (101,45.0) (102,78.0) (103,78.0) (104,78.0) (105,78.0) (106,78.0) (107,78.0) (108,84.0) (109,84.0) (110,84.0) (111,84.0) (112,84.0) (113,90.0) (114,180.0) (115,180.0) (116,180.0) (117,180.0) (118,180.0) (119,180.0) (120,180.0) (121,180.0) (122,180.0) (123,180.0) (124,180.0) (125,180.0) (126,180.0) (127,180.0) (128,180.0) (129,180.0) (130,180.0) (131,180.0) (132,180.0) (133,180.0) (134,180.0) (135,180.0) (136,314.0) (137,329.0) (138,344.0) (139,344.0) (140,344.0) (141,344.0) (142,344.0) (143,352.0) (144,352.0) (145,360.0) (146,360.0) (147,360.0) (148,360.0) (149,360.0) (150,360.0) (151,360.0) (152,360.0) (153,360.0) (154,360.0) (155,360.0) (156,360.0) (157,360.0) (158,360.0) (159,360.0) (160,360.0) (161,524.0) (162,546.0) (163,569.0) (164,569.0) (165,569.0) (166,591.0) (167,606.0) (168,621.0) (169,651.0) (170,651.0) (171,651.0) (172,651.0) (173,659.0) (174,659.0) (175,674.0) (176,689.0) (177,712.0) (178,712.0) (179,720.0) (180,720.0) (181,720.0) (182,720.0) (183,720.0) (184,720.0) (185,720.0) (186,720.0) (187,720.0) (188,966.0) (189,989.0) (190,1019.0) (191,1086.0) (192,1094.0) (193,1199.0) (194,1304.0) (195,1386.0) (196,1424.0) (197,1440.0) (198,1440.0) (199,1440.0) (200,1440.0) (201,1440.0) (202,1440.0) (203,1440.0) (204,1440.0) (205,1440.0) (206,1440.0) (207,1440.0) (208,1440.0) (209,1440.0) (210,1440.0) (211,2016.0) (212,2159.0) (213,2159.0) (214,2159.0) (215,2159.0) (216,2159.0) (217,2159.0) (218,2166.0) (219,2211.0) (220,2211.0) (221,2211.0) (222,2369.0) (223,2376.0) (224,2384.0) (225,2534.0) (226,2706.0) (227,2706.0) (228,2706.0) (229,2774.0) (230,2774.0) (231,2774.0) (232,2819.0) (233,2849.0) (234,2864.0) (235,2864.0) (236,2872.0) (237,2880.0) (238,2880.0) (239,2880.0) (240,2880.0) (241,2880.0) (242,2880.0) (243,2880.0) (244,3846.0) (245,4124.0) (246,4124.0) (247,4124.0) (248,4124.0) (249,4281.0) (250,4334.0) (251,4476.0) (252,4799.0) (253,4859.0) (254,4904.0) (255,4904.0) (256,4926.0) (257,4979.0) (258,5031.0) (259,5031.0) (260,5031.0) (261,5031.0) (262,5069.0) (263,5144.0) (264,5159.0) (265,5219.0) (266,5609.0) (267,5616.0) (268,5624.0) (269,5624.0) (270,5624.0) (271,5624.0) (272,5760.0) (273,5760.0) (274,5760.0) (275,5760.0) (276,5760.0) (277,7694.0) (278,7829.0) (279,7829.0) (280,7836.0) (281,8084.0) (282,8646.0) (283,8886.0) (284,9456.0) (285,9599.0) (286,10319.0) (287,10566.0) (288,10604.0) (289,10694.0) (290,10859.0) (291,10911.0) (292,11031.0) (293,11520.0) (294,11520.0) (295,16221.0) (296,17421.0) (297,18741.0) (298,19124.0) (299,nan) (300,nan) (301,nan) (302,nan) (303,nan) (304,nan) (305,nan) (306,nan) (307,nan) (308,nan) (309,nan) (310,nan) (311,nan) (312,nan) (313,nan) (314,nan) (315,nan) (316,nan) (317,nan) (318,nan) (319,nan) (320,nan) (321,nan) (322,nan)};%
\addlegendentry{Ltl2ldba}%
\end{axis}
\end{tikzpicture}