forked from pytorch/ignite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataflow.py
103 lines (83 loc) · 3.17 KB
/
dataflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from pathlib import Path
from typing import Callable, Optional, Tuple
import cv2
import torch
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Subset
from torchvision.datasets import ImageFolder
import ignite.distributed as idist
from ignite.utils import convert_tensor
def opencv_loader(path):
img = cv2.imread(path)
assert img is not None, f"Image at '{path}' has a problem"
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):
if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
dataset = Subset(dataset, indices)
return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs)
def get_train_val_loaders(
root_path: str,
train_transforms: Callable,
val_transforms: Callable,
batch_size: int = 16,
num_workers: int = 8,
val_batch_size: Optional[int] = None,
limit_train_num_samples: Optional[int] = None,
limit_val_num_samples: Optional[int] = None,
) -> Tuple[DataLoader, DataLoader, DataLoader]:
train_ds = ImageFolder(
Path(root_path) / "train",
transform=lambda sample: train_transforms(image=sample)["image"],
loader=opencv_loader,
)
val_ds = ImageFolder(
Path(root_path) / "val", transform=lambda sample: val_transforms(image=sample)["image"], loader=opencv_loader
)
if len(val_ds) < len(train_ds):
g = torch.Generator().manual_seed(len(train_ds))
train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)]
train_eval_ds = Subset(train_ds, train_eval_indices)
else:
train_eval_ds = train_ds
val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
train_loader = get_dataloader(
train_ds,
shuffle=True,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
limit_num_samples=limit_train_num_samples,
)
val_loader = get_dataloader(
val_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
train_eval_loader = get_dataloader(
train_eval_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
return train_loader, val_loader, train_eval_loader
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_batch(batch, device, non_blocking):
x, y = batch[0], batch[1]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking)
return x, y