forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataset.py
executable file
·85 lines (71 loc) · 3.02 KB
/
test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import unittest
import sys
from qlib.tests import TestAutoData
from qlib.data.dataset import TSDatasetH
import numpy as np
import time
from qlib.data.dataset.handler import DataHandlerLP
class TestDataset(TestAutoData):
def testTSDataset(self):
tsdh = TSDatasetH(
handler={
"class": "Alpha158",
"module_path": "qlib.contrib.data.handler",
"kwargs": {
"start_time": "2008-01-01",
"end_time": "2020-08-01",
"fit_start_time": "2008-01-01",
"fit_end_time": "2014-12-31",
"instruments": "csi300",
"infer_processors": [
{"class": "FilterCol", "kwargs": {"col_list": ["RESI5", "WVMA5", "RSQR5"]}},
{"class": "RobustZScoreNorm", "kwargs": {"fields_group": "feature", "clip_outlier": "true"}},
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
],
"learn_processors": [
"DropnaLabel",
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}}, # CSRankNorm
],
},
},
segments={
"train": ("2008-01-01", "2014-12-31"),
"valid": ("2015-01-01", "2016-12-31"),
"test": ("2017-01-01", "2020-08-01"),
},
)
tsds_train = tsdh.prepare("train", data_key=DataHandlerLP.DK_L) # Test the correctness
tsds = tsdh.prepare("valid", data_key=DataHandlerLP.DK_L)
t = time.time()
for idx in np.random.randint(0, len(tsds_train), size=2000):
_ = tsds_train[idx]
print(f"2000 sample takes {time.time() - t}s")
t = time.time()
for _ in range(20):
data = tsds_train[np.random.randint(0, len(tsds_train), size=2000)]
print(data.shape)
print(f"2000 sample(batch index) * 20 times takes {time.time() - t}s")
# The dimension of sample is same as tabular data, but it will return timeseries data of the sample
# We have two method to get the time-series of a sample
# 1) sample by int index directly
tsds[len(tsds) - 1]
# 2) sample by <datetime,instrument> index
data_from_ds = tsds["2016-12-31", "SZ300315"]
# Check the data
# Get data from DataFrame Directly
data_from_df = (
tsdh._handler.fetch(data_key=DataHandlerLP.DK_L)
.loc(axis=0)["2015-01-01":"2016-12-31", "SZ300315"]
.iloc[-30:]
.values
)
equal = np.isclose(data_from_df, data_from_ds)
self.assertTrue(equal[~np.isnan(data_from_df)].all())
if __name__ == "__main__":
unittest.main(verbosity=10)
# User could use following code to run test when using line_profiler
# td = TestDataset()
# td.setUpClass()
# td.testTSDataset()