forked from a-kravtsov/ksbins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bin_rules.py
260 lines (205 loc) · 6.53 KB
/
bin_rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
from scipy.special import gammaln
from scipy import optimize
def scotts_bin_width(data, return_bins=False):
r"""Return the optimal histogram bin width using Scott's rule:
Parameters
----------
data : array-like, ndim=1
observed (one-dimensional) data
return_bins : bool (optional)
if True, then return the bin edges
Returns
-------
width : float
optimal bin width using Scott's rule
bins : ndarray
bin edges: returned if `return_bins` is True
Notes
-----
The optimal bin width is
.. math::
\Delta_b = \frac{3.5\sigma}{n^{1/3}}
where :math:`\sigma` is the standard deviation of the data, and
:math:`n` is the number of data points.
See Also
--------
knuth_bin_width
freedman_bin_width
astroML.plotting.hist
"""
data = np.asarray(data)
if data.ndim != 1:
raise ValueError("data should be one-dimensional")
n = data.size
sigma = np.std(data)
dx = 3.5 * sigma * 1. / (n ** (1. / 3))
if return_bins:
Nbins = np.ceil((data.max() - data.min()) * 1. / dx)
Nbins = max(1, Nbins)
bins = data.min() + dx * np.arange(Nbins + 1)
return dx, bins
else:
return dx
def freedman_bin_width(data, return_bins=False):
r"""Return the optimal histogram bin width using the Freedman-Diaconis rule
Parameters
----------
data : array-like, ndim=1
observed (one-dimensional) data
return_bins : bool (optional)
if True, then return the bin edges
Returns
-------
width : float
optimal bin width using Scott's rule
bins : ndarray
bin edges: returned if `return_bins` is True
Notes
-----
The optimal bin width is
.. math::
\Delta_b = \frac{2(q_{75} - q_{25})}{n^{1/3}}
where :math:`q_{N}` is the :math:`N` percent quartile of the data, and
:math:`n` is the number of data points.
See Also
--------
knuth_bin_width
scotts_bin_width
astroML.plotting.hist
"""
data = np.asarray(data)
if data.ndim != 1:
raise ValueError("data should be one-dimensional")
n = data.size
if n < 4:
raise ValueError("data should have more than three entries")
dsorted = np.sort(data)
v25 = dsorted[int(n / 4 - 1)]
v75 = dsorted[int((3 * n) / 4 - 1)]
dx = 2 * (v75 - v25) * 1. / (n ** (1. / 3))
if return_bins:
Nbins = np.ceil((dsorted[-1] - dsorted[0]) * 1. / dx)
Nbins = max(1, Nbins)
bins = dsorted[0] + dx * np.arange(Nbins + 1)
return dx, bins
else:
return dx
class KnuthF(object):
r"""Class which implements the function minimized by knuth_bin_width
Parameters
----------
data : array-like, one dimension
data to be histogrammed
Notes
-----
the function F is given by
.. math::
F(M|x,I) = n\log(M) + \log\Gamma(\frac{M}{2})
- M\log\Gamma(\frac{1}{2})
- \log\Gamma(\frac{2n+M}{2})
+ \sum_{k=1}^M \log\Gamma(n_k + \frac{1}{2})
where :math:`\Gamma` is the Gamma function, :math:`n` is the number of
data points, :math:`n_k` is the number of measurements in bin :math:`k`.
See Also
--------
knuth_bin_width
astroML.plotting.hist
"""
def __init__(self, data):
self.data = np.array(data, copy=True)
if self.data.ndim != 1:
raise ValueError("data should be 1-dimensional")
self.data.sort()
self.n = self.data.size
def bins(self, M):
"""Return the bin edges given a width dx"""
return np.linspace(self.data[0], self.data[-1], int(M) + 1)
def __call__(self, M):
return self.eval(M)
def eval(self, M):
"""Evaluate the Knuth function
Parameters
----------
dx : float
Width of bins
Returns
-------
F : float
evaluation of the negative Knuth likelihood function:
smaller values indicate a better fit.
"""
M = int(M)
if M <= 0:
return np.inf
bins = self.bins(M)
nk, bins = np.histogram(self.data, bins)
return -(self.n * np.log(M)
+ gammaln(0.5 * M)
- M * gammaln(0.5)
- gammaln(self.n + 0.5 * M)
+ np.sum(gammaln(nk + 0.5)))
def knuth_bin_width(data, return_bins=False):
r"""Return the optimal histogram bin width using Knuth's rule [1]_
Parameters
----------
data : array-like, ndim=1
observed (one-dimensional) data
return_bins : bool (optional)
if True, then return the bin edges
Returns
-------
dx : float
optimal bin width. Bins are measured starting at the first data point.
bins : ndarray
bin edges: returned if `return_bins` is True
Notes
-----
The optimal number of bins is the value M which maximizes the function
.. math::
F(M|x,I) = n\log(M) + \log\Gamma(\frac{M}{2})
- M\log\Gamma(\frac{1}{2})
- \log\Gamma(\frac{2n+M}{2})
+ \sum_{k=1}^M \log\Gamma(n_k + \frac{1}{2})
where :math:`\Gamma` is the Gamma function, :math:`n` is the number of
data points, :math:`n_k` is the number of measurements in bin :math:`k`.
References
----------
.. [1] Knuth, K.H. "Optimal Data-Based Binning for Histograms".
arXiv:0605197, 2006
See Also
--------
KnuthF
freedman_bin_width
scotts_bin_width
"""
knuthF = KnuthF(data)
dx0, bins0 = freedman_bin_width(data, True)
M0 = len(bins0) - 1
M = optimize.fmin(knuthF, len(bins0))[0]
bins = knuthF.bins(M)
dx = bins[1] - bins[0]
if return_bins:
return dx, bins
else:
return dx
def shimazaki_shinomoto_rule(x, nbmin=4, nbmax=500):
"""
Compute the number of bins for samples in an array x using the
Shimazaki and Shinomoto (2007) method
"""
x_max = np.max(x)
x_min = np.min(x)
nbins = np.arange(nbmin, nbmax) # vector of bin numbers
hb = (x_max - x_min) / nbins # bin size vector
C = np.empty_like(hb)
# computation of the cost function
for i, nb in enumerate(nbins):
ni = np.histogram(x, bins=nb)[0]
nbar = np.mean(ni) # mean of counts in bins
v = np.var(ni) # biased variance estimate of counts in bins
C[i] = (2. * nbar - v) / (hb[i]**2) # the cost function
# optimal bin size: find index of the smallest C
imin = np.argmin(C)
nb_best, h_best = nbins[imin], hb[imin]
return nb_best, h_best