-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
236 lines (215 loc) · 6.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""Example workflow."""
import logging
from pathlib import Path
import click
import more_click
import torch
from pykeen.evaluation import RankBasedEvaluator
from pykeen.losses import NSSALoss
from pykeen.models.inductive import InductiveNodePiece, InductiveNodePieceGNN
from pykeen.trackers import ConsoleResultTracker, WANDBResultTracker
from pykeen.training import SLCWATrainingLoop
from pykeen.typing import TESTING, TRAINING, VALIDATION
from pykeen.utils import resolve_device, set_random_seed
from torch.optim import Adam
from dataset import InductiveLPDataset, Size
HERE = Path(__file__).parent.resolve()
DATA = HERE.joinpath("data")
# fix the seed for reproducibility
set_random_seed(42)
# for GNN layer reproducibility
# when running on a GPU, make sure to set up an env variable as advised in the doc:
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
# torch.use_deterministic_algorithms(True)
@click.command()
@click.option(
"-ds",
"--dataset",
type=click.Choice(["small", "large"]),
default="small",
show_default=True,
help="The dataset to use",
)
@click.option(
"-d",
"--embedding-dim",
type=int,
default=100,
show_default=True,
help="The dimension of the entity embeddings",
)
@click.option(
"-t",
"--tokens",
type=int,
default=5,
show_default=True,
help="Number of tokens to use in NodePiece",
)
@click.option(
"-lr",
"--learning-rate",
type=float,
default=0.0001,
show_default=True,
help="The learning rate of the optimizer",
)
@click.option(
"-m",
"--margin",
type=float,
default=15.0,
show_default=True,
help="The margin value to use for the negative sampling self-adversarial loss.",
)
@click.option(
"-n",
"--num-negatives",
type=int,
default=4,
show_default=True,
help="The number of negative samples per positive.",
)
@click.option(
"-b",
"--batch-size",
type=int,
default=256,
show_default=True,
help="The batch size to use during training",
)
@click.option(
"-e",
"--epochs",
type=int,
default=100,
show_default=True,
help="The number of training epochs",
)
@click.option(
"--wandb",
is_flag=True,
help="Track results with Weights & Biases (requires `wandb` to be installed).",
)
@click.option("--save", is_flag=True, help=f"Save the model in the {DATA} directory")
@click.option(
"--gnn", is_flag=True, help="Use the Inductive NodePiece model with GCN layers"
)
@more_click.log_level_option()
def main(
dataset: Size,
embedding_dim: int,
tokens: int,
learning_rate: float,
margin: float,
num_negatives: int,
batch_size: int,
epochs: int,
wandb: bool,
save: bool,
gnn: bool,
log_level: str,
):
"""Train an inductive model with NodePiece representations and an optional GNN encoder."""
# set appropriate log-level
logging.basicConfig(level=log_level)
# dataset loading
dataset = InductiveLPDataset(size=dataset)
loss = NSSALoss(margin=margin)
# we have two baselines: InductiveNodePiece and InductiveNodePieceGNN
# the GNN version uses a 2-layer CompGCN message passing encoder on the training / inference graphs
# but feel free to create and attach your own GNN encoder via the gnn_encoder argument
# and new inductive link prediction models in general
model_cls = InductiveNodePieceGNN if gnn else InductiveNodePiece
model = model_cls(
embedding_dim=embedding_dim,
triples_factory=dataset.transductive_training,
inference_factory=dataset.inductive_inference,
num_tokens=tokens,
aggregation="mlp",
loss=loss,
).to(resolve_device())
optimizer = Adam(params=model.parameters(), lr=learning_rate)
logging.info(f"Number of parameters: {sum(p.numel() for p in model.parameters())}")
logging.info(f"Space occupied: {model.num_parameter_bytes} bytes")
if wandb:
tracker = WANDBResultTracker(
project="inductive_ilp", # put here your project and entity
entity="pykeen",
config=click.get_current_context().params,
)
tracker.start_run()
else:
tracker = ConsoleResultTracker()
# default training regime is negative sampling (SLCWA)
# you can also use the 1-N regime with the LCWATrainingLoop
# the LCWA loop does not need negative sampling kwargs, but accepts label_smoothing in the .train() method
training_loop = SLCWATrainingLoop(
triples_factory=dataset.transductive_training,
model=model,
optimizer=optimizer,
result_tracker=tracker,
negative_sampler_kwargs=dict(
# affects training speed, the more - the better
num_negs_per_pos=num_negatives
),
mode=TRAINING, # must be specified for the inductive setup
)
# specifying hits@k values: 1, 3, 5, 10, 100
valid_evaluator = RankBasedEvaluator(
mode=VALIDATION,
metrics=["hits_at_k"]*5,
metrics_kwargs=[dict(k=k) for k in (1, 3, 5, 10, 100)],
add_defaults=True,
)
test_evaluator = RankBasedEvaluator(
mode=TESTING,
metrics=["hits_at_k"] * 5,
metrics_kwargs=[dict(k=k) for k in (1, 3, 5, 10, 100)],
add_defaults=True
)
# model training and eval on validation starts here
training_loop.train(
triples_factory=dataset.transductive_training,
num_epochs=epochs,
batch_size=batch_size,
callbacks="evaluation",
callback_kwargs=dict(
evaluator=valid_evaluator,
evaluation_triples=dataset.inductive_validation.mapped_triples,
prefix="validation",
frequency=1,
additional_filter_triples=dataset.inductive_inference.mapped_triples,
batch_size=batch_size,
),
)
# final eval on the test set
result = test_evaluator.evaluate(
model=model,
mapped_triples=dataset.inductive_testing.mapped_triples,
additional_filter_triples=[
# filtering of other positive triples
dataset.inductive_inference.mapped_triples,
dataset.inductive_validation.mapped_triples,
],
batch_size=batch_size,
)
# extracting final metrics
for metric, metric_label in [
("inverse_harmonic_mean_rank", "MRR"),
*((f"hits_at_{k}", f"Hits@{k}") for k in (100, 10, 5, 3, 1)),
("adjusted_arithmetic_mean_rank_index", "AMRI"),
]:
logging.info(f"Test {metric_label:10}: {result.get_metric(name=metric):.5f}")
# you can also log the final results to wandb if you want
if wandb:
tracker.log_metrics(
metrics=result.to_flat_dict(),
step=epochs + 1,
prefix="test",
)
# saving the final model
if save:
torch.save(model, DATA.joinpath("model.pth"))
if __name__ == "__main__":
main()