forked from smsharma/mining-for-substructure-lens
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombine_samples.py
executable file
·194 lines (161 loc) · 6 KB
/
combine_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#! /usr/bin/env python
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import numpy as np
import re
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)-5.5s %(name)-20.20s %(levelname)-7.7s %(message)s",
datefmt="%H:%M",
level=logging.INFO,
)
def shuffle_and_combine(dir, input_samples, output_sample, regex=False):
logger.info("Starting shuffling and combining")
logger.info(" Folder: %s", dir)
logger.info(" Input samples: %s", input_samples[0])
for sample in input_samples[1:]:
logger.info(" %s", sample)
logger.info(" Output sample: %s", output_sample)
logger.info(" Regular expressions: %s", regex)
# Path and filenames
folder = "{}/data/samples/".format(dir)
filenames = ["theta", "theta_alt", "x", "t_xz", "t_xz_alt", "log_r_xz", "log_r_xz_alt", "z"]
# Parse regular expressions
if regex:
input_expressions = input_samples
input_samples = []
for expr in input_expressions:
logging.debug(
"Parsing regex %s in folder %s", "x_(" + expr + ")\.npy", folder
)
regex = re.compile("x_(" + expr + ")\.npy")
for root, _, files in os.walk(folder):
for file in files:
if regex.match(file):
input_sample = file[2:-4]
if input_sample in input_samples:
logging.debug(
" Input sample %s already in list", input_sample
)
continue
logging.debug(" Found input sample %s", input_sample)
input_samples.append(input_sample)
if len(input_samples) == 0:
logging.warning(" No matching input samples found!")
return
# Combine samples
n_samples = None
permutation = None
for filename in filenames:
# Load individual files
try:
individuals = [
np.load(folder + "/" + filename + "_" + input_sample + ".npy")
for input_sample in input_samples
]
except FileNotFoundError:
logger.info(
"Object %s does not exist for (some of the) input samples", filename
)
continue
# Combine
try:
combined = np.concatenate(individuals, axis=0)
except ValueError:
logging.warning(
"Object %s: individual results do not have matching shapes!", filename
)
for input_sample, individual in zip(input_samples, individuals):
logging.warning(
" %s: %s has shape %s", input_sample, filename, individual.shape
)
continue
logger.info(
"Combined %s %s files, combined shape: %s",
len(individuals),
filename,
combined.shape,
)
# Shuffle
if n_samples is None or permutation is None:
n_samples = combined.shape[0]
permutation = np.random.permutation(n_samples)
else:
if n_samples != combined.shape[0]:
logging.error("Inconsistent shapes!")
raise RuntimeError("Inconsistent shapes!")
combined = combined[permutation]
logger.info("Shuffled combined %s results", filename)
# Save
try:
np.save(folder + "/" + filename + "_" + output_sample + ".npy", combined)
np.savez_compressed(
folder + "/" + filename + "_" + output_sample + ".npz", combined
)
except FileExistsError:
logging.warning(
"File %s already exists, cannot save results!",
folder + "/" + filename + "_" + output_sample + ".npy",
)
continue
logger.info(
"Saved file %s", folder + "/" + filename + "_" + output_sample + ".npy"
)
def remove_infs_and_nans(folder, filenames, input_sample):
data = []
out_filenames = []
for filename in filenames:
try:
data.append(np.load(folder + "/" + filename + "_" + input_sample + ".npy"))
out_filenames.append(
folder + "/" + filename + "_" + input_sample + "_cleaned.npy"
)
except FileNotFoundError:
pass
cut = None
for array in data:
this_cut = np.all(np.isfinite(array.reshape(array.shape[0], -1)), axis=1)
if cut is None:
cut = this_cut
else:
cut = np.logical_and(cut, this_cut)
n_pass = np.sum(cut, dtype=np.int)
n_fail = len(cut) - n_pass
logger.info(
"Cleaning up *_%s.npy: %s samples pass, %s samples removed",
folder,
input_sample,
n_pass,
n_fail,
)
for array, out_filename in zip(data, out_filenames):
cleaned_array = array[cut]
np.save(out_filename, cleaned_array)
def parse_args():
# Parse arguments
parser = argparse.ArgumentParser(
description="Combines multiple separate simulated samples"
)
parser.add_argument("output", help='Combined sample label (like "train" or "test")')
parser.add_argument(
"inputs",
nargs="+",
help='Individual input sample labels (like "train0 train1 train2"). If '
"option --regex is set, inputs can be regular expressions.",
)
parser.add_argument(
"--regex", action="store_true", help="Allows regular expressions in inputs"
)
parser.add_argument(
"--dir",
type=str,
default=".",
help="Directory. Samples will be looked for / saved in the data/samples subfolder.",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
shuffle_and_combine(args.dir, args.inputs, args.output, args.regex)
logger.info("All done! Have a nice day!")