Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tweak defaults for CompartmentalModel.fit_mcmc() #2563

Merged
merged 2 commits into from
Jul 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions pyro/contrib/epidemiology/compartmental.py
Original file line number Diff line number Diff line change
Expand Up @@ -469,9 +469,10 @@ def fit_mcmc(self, **options):
Note that computational cost is exponential in `num_quant_bins`.
Defaults to 1 for relaxed inference.
:param bool haar: Whether to use a Haar wavelet reparameterizer.
Defaults to True.
:param int haar_full_mass: Number of low frequency Haar components to
include in the full mass matrix. If nonzero this implies
``haar=True``.
include in the full mass matrix. If ``haar=False`` then this is
ignored. Defaults to 10.
:param int heuristic_num_particles: Passed to :meth:`heuristic` as
``num_particles``. Defaults to 1024.
:returns: An MCMC object for diagnostics, e.g. ``MCMC.summary()``.
Expand All @@ -489,14 +490,14 @@ def fit_mcmc(self, **options):

# Setup Haar wavelet transform.
haar = options.pop("haar", False)
haar_full_mass = options.pop("haar_full_mass", 0)
haar_full_mass = options.pop("haar_full_mass", 10)
full_mass = options.pop("full_mass", self.full_mass)
assert isinstance(haar, bool)
assert isinstance(haar_full_mass, int) and haar_full_mass >= 0
assert isinstance(full_mass, (bool, list))
haar_full_mass = min(haar_full_mass, self.duration)
if haar_full_mass:
haar = True
if not haar:
haar_full_mass = 0
if full_mass is True:
haar_full_mass = 0 # No need to split.
elif haar_full_mass >= self.duration:
Expand Down
45 changes: 23 additions & 22 deletions tests/contrib/epidemiology/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,17 +27,18 @@
("svi", {"guide_rank": 2}),
("svi", {"guide_rank": "full"}),
("mcmc", {}),
("mcmc", {"haar": True}),
("mcmc", {"haar": False}),
("mcmc", {"haar_full_mass": 0}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"num_quant_bins": 2}),
("mcmc", {"num_quant_bins": 4}),
("mcmc", {"num_quant_bins": 8}),
("mcmc", {"num_quant_bins": 12}),
("mcmc", {"num_quant_bins": 16}),
("mcmc", {"num_quant_bins": 2, "haar": True}),
("mcmc", {"num_quant_bins": 2, "haar": False}),
("mcmc", {"arrowhead_mass": True}),
("mcmc", {"jit_compile": True}),
("mcmc", {"jit_compile": True, "haar_full_mass": 2}),
("mcmc", {"jit_compile": True, "haar_full_mass": 0}),
("mcmc", {"jit_compile": True, "num_quant_bins": 2}),
("mcmc", {"num_chains": 2, "mp_context": "spawn"}),
("mcmc", {"num_chains": 2, "mp_context": "spawn", "num_quant_bins": 2}),
Expand Down Expand Up @@ -77,8 +78,8 @@ def test_simple_sir_smoke(duration, forecast, options, algo):
("svi", {}),
("svi", {"haar": False}),
("mcmc", {}),
("mcmc", {"haar": True}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"haar": False}),
("mcmc", {"haar_full_mass": 0}),
("mcmc", {"num_quant_bins": 2}),
], ids=str)
def test_simple_seir_smoke(duration, forecast, options, algo):
Expand Down Expand Up @@ -116,7 +117,7 @@ def test_simple_seir_smoke(duration, forecast, options, algo):
@pytest.mark.parametrize("algo,options", [
("svi", {}),
("mcmc", {}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"haar_full_mass": 0}),
], ids=str)
def test_simple_seird_smoke(duration, forecast, options, algo):
population = 100
Expand Down Expand Up @@ -155,8 +156,8 @@ def test_simple_seird_smoke(duration, forecast, options, algo):
@pytest.mark.parametrize("forecast", [7])
@pytest.mark.parametrize("options", [
{},
{"haar": False},
{"num_quant_bins": 2},
{"haar_full_mass": 2},
], ids=str)
def test_overdispersed_sir_smoke(duration, forecast, options):
population = 100
Expand Down Expand Up @@ -186,7 +187,7 @@ def test_overdispersed_sir_smoke(duration, forecast, options):
@pytest.mark.parametrize("forecast", [7])
@pytest.mark.parametrize("options", [
{},
{"haar_full_mass": 2},
{"haar": False},
{"num_quant_bins": 2},
], ids=str)
def test_overdispersed_seir_smoke(duration, forecast, options):
Expand Down Expand Up @@ -221,8 +222,8 @@ def test_overdispersed_seir_smoke(duration, forecast, options):
@pytest.mark.parametrize("forecast", [0, 7])
@pytest.mark.parametrize("options", [
{},
{"haar": True},
{"haar_full_mass": 2},
{"haar": False},
{"haar_full_mass": 0},
{"num_quant_bins": 2},
], ids=str)
def test_superspreading_sir_smoke(duration, forecast, options):
Expand Down Expand Up @@ -253,8 +254,8 @@ def test_superspreading_sir_smoke(duration, forecast, options):
@pytest.mark.parametrize("forecast", [0, 7])
@pytest.mark.parametrize("options", [
{},
{"haar": True},
{"haar_full_mass": 2},
{"haar": False},
{"haar_full_mass": 0},
{"num_quant_bins": 2},
], ids=str)
def test_superspreading_seir_smoke(duration, forecast, options):
Expand Down Expand Up @@ -335,7 +336,7 @@ def test_coalescent_likelihood_smoke(duration, forecast, options, algo):
("svi", {}),
("svi", {"haar": False}),
("mcmc", {}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"haar": False}),
("mcmc", {"num_quant_bins": 2}),
], ids=str)
def test_heterogeneous_sir_smoke(duration, forecast, options, algo):
Expand Down Expand Up @@ -368,8 +369,8 @@ def test_heterogeneous_sir_smoke(duration, forecast, options, algo):
@pytest.mark.parametrize("options", [
xfail_param({}, reason="Delta is incompatible with relaxed inference"),
{"num_quant_bins": 2},
{"num_quant_bins": 2, "haar": True},
{"num_quant_bins": 2, "haar_full_mass": 3},
{"num_quant_bins": 2, "haar": False},
{"num_quant_bins": 2, "haar_full_mass": 0},
{"num_quant_bins": 4},
], ids=str)
def test_sparse_smoke(duration, forecast, options):
Expand Down Expand Up @@ -411,8 +412,8 @@ def test_sparse_smoke(duration, forecast, options):
@pytest.mark.parametrize("forecast", [0, 7])
@pytest.mark.parametrize("options", [
{},
{"haar": True},
{"haar_full_mass": 4},
{"haar": False},
{"haar_full_mass": 0},
{"num_quant_bins": 2},
], ids=str)
def test_unknown_start_smoke(duration, pre_obs_window, forecast, options):
Expand Down Expand Up @@ -459,8 +460,8 @@ def test_unknown_start_smoke(duration, pre_obs_window, forecast, options):
("svi", {}),
("svi", {"haar": False}),
("mcmc", {}),
("mcmc", {"haar": True}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"haar": False}),
("mcmc", {"haar_full_mass": 0}),
("mcmc", {"num_quant_bins": 2}),
], ids=str)
def test_regional_smoke(duration, forecast, options, algo):
Expand Down Expand Up @@ -500,11 +501,11 @@ def test_regional_smoke(duration, forecast, options, algo):
("svi", {}),
("svi", {"haar": False}),
("mcmc", {}),
("mcmc", {"haar": True}),
("mcmc", {"haar_full_mass": 2}),
("mcmc", {"haar": False}),
("mcmc", {"haar_full_mass": 0}),
("mcmc", {"num_quant_bins": 2}),
("mcmc", {"jit_compile": True}),
("mcmc", {"jit_compile": True, "haar_full_mass": 2}),
("mcmc", {"jit_compile": True, "haar": False}),
("mcmc", {"jit_compile": True, "num_quant_bins": 2}),
], ids=str)
def test_hetero_regional_smoke(duration, forecast, options, algo):
Expand Down
2 changes: 1 addition & 1 deletion tutorial/source/epi_intro.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -592,7 +592,7 @@
"%%time\n",
"model = SimpleSIRModel(population, recovery_time, obs)\n",
"mcmc = model.fit_mcmc(num_samples=4 if smoke_test else 400,\n",
" haar_full_mass=10, jit_compile=True)"
" jit_compile=True)"
]
},
{
Expand Down