|
| 1 | +Type aliases |
| 2 | +============ |
| 3 | + |
| 4 | +(See :pep:`613` for the introduction of ``TypeAlias``, and |
| 5 | +:pep:`695` for the ``type`` statement.) |
| 6 | + |
| 7 | +Type aliases may be defined by simple variable assignments:: |
| 8 | + |
| 9 | + Url = str |
| 10 | + |
| 11 | + def retry(url: Url, retry_count: int) -> None: ... |
| 12 | + |
| 13 | +Or by using ``typing.TypeAlias``:: |
| 14 | + |
| 15 | + from typing import TypeAlias |
| 16 | + |
| 17 | + Url: TypeAlias = str |
| 18 | + |
| 19 | + def retry(url: Url, retry_count: int) -> None: ... |
| 20 | + |
| 21 | +Or by using the ``type`` statement (Python 3.12 and higher):: |
| 22 | + |
| 23 | + type Url = str |
| 24 | + |
| 25 | + def retry(url: Url, retry_count: int) -> None: ... |
| 26 | + |
| 27 | +Note that we recommend capitalizing alias names, since they represent |
| 28 | +user-defined types, which (like user-defined classes) are typically |
| 29 | +spelled that way. |
| 30 | + |
| 31 | +Type aliases may be as complex as type hints in annotations -- |
| 32 | +anything that is acceptable as a type hint is acceptable in a type |
| 33 | +alias:: |
| 34 | + |
| 35 | + from typing import TypeVar |
| 36 | + from collections.abc import Iterable |
| 37 | + |
| 38 | + T = TypeVar('T', bound=float) |
| 39 | + Vector = Iterable[tuple[T, T]] |
| 40 | + |
| 41 | + def inproduct(v: Vector[T]) -> T: |
| 42 | + return sum(x*y for x, y in v) |
| 43 | + def dilate(v: Vector[T], scale: T) -> Vector[T]: |
| 44 | + return ((x * scale, y * scale) for x, y in v) |
| 45 | + vec: Vector[float] = [] |
| 46 | + |
| 47 | + |
| 48 | +This is equivalent to:: |
| 49 | + |
| 50 | + from typing import TypeVar |
| 51 | + from collections.abc import Iterable |
| 52 | + |
| 53 | + T = TypeVar('T', bound=float) |
| 54 | + |
| 55 | + def inproduct(v: Iterable[tuple[T, T]]) -> T: |
| 56 | + return sum(x*y for x, y in v) |
| 57 | + def dilate(v: Iterable[tuple[T, T]], scale: T) -> Iterable[tuple[T, T]]: |
| 58 | + return ((x * scale, y * scale) for x, y in v) |
| 59 | + vec: Iterable[tuple[float, float]] = [] |
| 60 | + |
| 61 | +``TypeAlias`` |
| 62 | +------------- |
| 63 | + |
| 64 | +The explicit alias declaration syntax with ``TypeAlias`` clearly differentiates between the three |
| 65 | +possible kinds of assignments: typed global expressions, untyped global |
| 66 | +expressions, and type aliases. This avoids the existence of assignments that |
| 67 | +break type checking when an annotation is added, and avoids classifying the |
| 68 | +nature of the assignment based on the type of the value. |
| 69 | + |
| 70 | +Implicit syntax (pre-existing): |
| 71 | + |
| 72 | +:: |
| 73 | + |
| 74 | + x = 1 # untyped global expression |
| 75 | + x: int = 1 # typed global expression |
| 76 | + |
| 77 | + x = int # type alias |
| 78 | + x: type[int] = int # typed global expression |
| 79 | + |
| 80 | + |
| 81 | +Explicit syntax: |
| 82 | + |
| 83 | +:: |
| 84 | + |
| 85 | + x = 1 # untyped global expression |
| 86 | + x: int = 1 # typed global expression |
| 87 | + |
| 88 | + x = int # untyped global expression (see note below) |
| 89 | + x: type[int] = int # typed global expression |
| 90 | + |
| 91 | + x: TypeAlias = int # type alias |
| 92 | + x: TypeAlias = "MyClass" # type alias |
| 93 | + |
| 94 | + |
| 95 | +Note: The examples above illustrate implicit and explicit alias declarations in |
| 96 | +isolation. For the sake of backwards compatibility, type checkers should support |
| 97 | +both simultaneously, meaning an untyped global expression ``x = int`` will |
| 98 | +still be considered a valid type alias. |
| 99 | + |
| 100 | +``type`` statement |
| 101 | +------------------ |
| 102 | + |
| 103 | +Type aliases may also be defined using the ``type`` statement (Python 3.12 and |
| 104 | +higher). |
| 105 | + |
| 106 | +The ``type`` statement allows the creation of explicitly generic |
| 107 | +type aliases:: |
| 108 | + |
| 109 | + type ListOrSet[T] = list[T] | set[T] |
| 110 | + |
| 111 | +Type parameters declared as part of a generic type alias are valid only |
| 112 | +when evaluating the right-hand side of the type alias. |
| 113 | + |
| 114 | +As with ``typing.TypeAlias``, type checkers should restrict the right-hand |
| 115 | +expression to expression forms that are allowed within type annotations. |
| 116 | +The use of more complex expression forms (call expressions, ternary operators, |
| 117 | +arithmetic operators, comparison operators, etc.) should be flagged as an |
| 118 | +error. |
| 119 | + |
| 120 | +Type alias expressions are not allowed to use traditional type variables (i.e. |
| 121 | +those allocated with an explicit ``TypeVar`` constructor call). Type checkers |
| 122 | +should generate an error in this case. |
| 123 | + |
| 124 | +:: |
| 125 | + |
| 126 | + T = TypeVar("T") |
| 127 | + type MyList = list[T] # Type checker error: traditional type variable usage |
| 128 | + |
| 129 | +``NewType`` |
| 130 | +----------- |
| 131 | + |
| 132 | +There are also situations where a programmer might want to avoid logical |
| 133 | +errors by creating simple classes. For example:: |
| 134 | + |
| 135 | + class UserId(int): |
| 136 | + pass |
| 137 | + |
| 138 | + def get_by_user_id(user_id: UserId): |
| 139 | + ... |
| 140 | + |
| 141 | +However, this approach introduces a runtime overhead. To avoid this, |
| 142 | +``typing.py`` provides a helper function ``NewType`` that creates |
| 143 | +simple unique types with almost zero runtime overhead. For a static type |
| 144 | +checker ``Derived = NewType('Derived', Base)`` is roughly equivalent |
| 145 | +to a definition:: |
| 146 | + |
| 147 | + class Derived(Base): |
| 148 | + def __init__(self, _x: Base) -> None: |
| 149 | + ... |
| 150 | + |
| 151 | +While at runtime, ``NewType('Derived', Base)`` returns a dummy function |
| 152 | +that simply returns its argument. Type checkers require explicit casts |
| 153 | +from ``int`` where ``UserId`` is expected, while implicitly casting |
| 154 | +from ``UserId`` where ``int`` is expected. Examples:: |
| 155 | + |
| 156 | + UserId = NewType('UserId', int) |
| 157 | + |
| 158 | + def name_by_id(user_id: UserId) -> str: |
| 159 | + ... |
| 160 | + |
| 161 | + UserId('user') # Fails type check |
| 162 | + |
| 163 | + name_by_id(42) # Fails type check |
| 164 | + name_by_id(UserId(42)) # OK |
| 165 | + |
| 166 | + num = UserId(5) + 1 # type: int |
| 167 | + |
| 168 | +``NewType`` accepts exactly two arguments: a name for the new unique type, |
| 169 | +and a base class. The latter should be a proper class (i.e., |
| 170 | +not a type construct like ``Union``, etc.), or another unique type created |
| 171 | +by calling ``NewType``. The function returned by ``NewType`` |
| 172 | +accepts only one argument; this is equivalent to supporting only one |
| 173 | +constructor accepting an instance of the base class (see above). Example:: |
| 174 | + |
| 175 | + class PacketId: |
| 176 | + def __init__(self, major: int, minor: int) -> None: |
| 177 | + self._major = major |
| 178 | + self._minor = minor |
| 179 | + |
| 180 | + TcpPacketId = NewType('TcpPacketId', PacketId) |
| 181 | + |
| 182 | + packet = PacketId(100, 100) |
| 183 | + tcp_packet = TcpPacketId(packet) # OK |
| 184 | + |
| 185 | + tcp_packet = TcpPacketId(127, 0) # Fails in type checker and at runtime |
| 186 | + |
| 187 | +Both ``isinstance`` and ``issubclass``, as well as subclassing will fail |
| 188 | +for ``NewType('Derived', Base)`` since function objects don't support |
| 189 | +these operations. |
0 commit comments