diff --git a/backends/cadence/utils/facto_util.py b/backends/cadence/utils/facto_util.py index 001fc882685..b5c5683ab5d 100644 --- a/backends/cadence/utils/facto_util.py +++ b/backends/cadence/utils/facto_util.py @@ -266,6 +266,9 @@ def random_size_constraint(deps: object, r: int, d: int) -> int: tensor_constraints.extend( [ cp.Dtype.In(lambda deps: [torch.float32, torch.int32]), + # Avoid NaN/Inf values that expose clamp NaN handling bugs + cp.Value.Ge(lambda deps, dtype, struct: -(2**4)), + cp.Value.Le(lambda deps, dtype, struct: 2**4), ] ) case "rsqrt.default": @@ -456,6 +459,7 @@ def apply_scalar_contraints(op_name: str) -> list[ScalarDtype]: | "mul.Scalar" | "div.Scalar" | "constant_pad_nd.default" + | "clamp.default" ): return [ScalarDtype.int] case "full.default": @@ -483,7 +487,32 @@ def facto_testcase_gen( # noqa: C901 cp.Size.Le(lambda deps, r, d: 2**2), ] ) - if in_spec.name == "max_val": # hardtanh + # Special handling for clamp.default to ensure min < max with sufficient gap (at least 2) and never None + if op_name == "clamp.default": + if in_spec.name == "min": + # min must always be provided (not None) and bounded, leave room for max + spec.inspec[index].constraints.extend( + [ + cp.Optional.Eq(lambda deps: False), # Never None + cp.Value.Ge(lambda deps, dtype: -(2**4)), + cp.Value.Le( + lambda deps, dtype: 2**4 - 2 + ), # Leave room for max (at least 2 units) + ] + ) + elif in_spec.name == "max": + # max must always be provided (not None), be >= min + 2 (sufficient gap), and bounded + spec.inspec[index].deps = [0, 1] # deps on input tensor and min + spec.inspec[index].constraints.extend( + [ + cp.Optional.Eq(lambda deps: False), # Never None + cp.Value.Ge( + lambda deps, dtype: deps[1] + 2 + ), # max >= min + 2 (sufficient gap) + cp.Value.Le(lambda deps, dtype: 2**4), + ] + ) + elif in_spec.name == "max_val": # hardtanh spec.inspec[index].deps = [0, 1] spec.inspec[index].constraints.extend( [cp.Value.Ge(lambda deps, _: deps[1])]