-
Notifications
You must be signed in to change notification settings - Fork 329
/
Copy pathrlhf.py
220 lines (193 loc) · 9.57 KB
/
rlhf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from copy import copy, deepcopy
import torch
from tensordict import TensorDict, TensorDictBase, unravel_key
from tensordict.nn import ProbabilisticTensorDictModule, TensorDictParams
from tensordict.utils import is_seq_of_nested_key
from torch import nn
from torchrl.data.tensor_specs import CompositeSpec, UnboundedContinuousTensorSpec
from torchrl.envs.transforms.transforms import Transform
from torchrl.envs.transforms.utils import _set_missing_tolerance, _stateless_param
class KLRewardTransform(Transform):
"""A transform to add a KL[pi_current||pi_0] correction term to the reward.
This transform is used to constrain the policy to remain close to its original
configuration which limits overfitting when fine-tuning using RLHF.
Args:
actor (ProbabilisticTensorDictModule): a probabilistic actor. It must
have the following features: it must have a set of input (``in_keys``)
and output keys (``out_keys``). It must have a ``get_dist`` method
that outputs the distribution of the action.
coef (float): the coefficient of the KL term. Defaults to ``1.0``.
in_keys (str or list of str/tuples of str): the input key where the
reward should be fetched. Defaults to ``"reward"``.
out_keys (str or list of str/tuples of str): the output key where the
reward should be written. Defaults to ``"reward"``.
requires_grad (bool, optional): if ``True``, the frozen parameters will
consist of differentiable clones of the original params.
Defaults to ``False``.
.. note:: If the parameters are not differentiable (default), they will *not*
follow the module when dtype or device casting operations will be called
(such as :meth:`~.cuda`, :meth:`~.to` etc.). When ``requires_grad=True``,
casting operations will work as expected.
Examples:
>>> from torchrl.envs.libs.gym import GymEnv
>>> from torchrl.envs import TransformedEnv
>>> from tensordict.nn import TensorDictModule as Mod, NormalParamExtractor
>>> from torchrl.modules import ProbabilisticActor
>>> from tensordict import TensorDict
>>> from torchrl.modules.distributions import TanhNormal
>>> from torch import nn
>>> base_env = GymEnv("Pendulum-v1")
>>> n_obs = base_env.observation_spec["observation"].shape[-1]
>>> n_act = base_env.action_spec.shape[-1]
>>> module = Mod(
... nn.Sequential(nn.Linear(n_obs, n_act * 2), NormalParamExtractor()),
... in_keys=["observation"],
... out_keys=["loc", "scale"],
... )
>>> actor = ProbabilisticActor(
... module,
... in_keys=["loc", "scale"],
... distribution_class=TanhNormal,
... return_log_prob=True,
... )
>>> transform = KLRewardTransform(actor, out_keys="reward_kl")
>>> env = TransformedEnv(base_env, transform)
>>> with torch.no_grad():
... # modify the actor parameters
... _ = TensorDict(dict(actor.named_parameters()), []).apply_(lambda x: x.data.copy_(x.data + 1))
... td = env.rollout(3, actor)
>>> # check that rewards have been modified
>>> assert (td.get(("next", "reward")) != td.get(("next", "reward_kl"))).all()
.. note:: Because the KL formulat is not always available and the parameters of the
original distribution may not have been recorded, we use a stochastic estimate
of the KL divergence.
"""
DEFAULT_IN_KEYS = ["reward"]
def __init__(
self,
actor: ProbabilisticTensorDictModule,
coef=1.0,
in_keys=None,
out_keys=None,
requires_grad=False,
):
if in_keys is None:
in_keys = self.DEFAULT_IN_KEYS
if out_keys is None:
out_keys = copy(in_keys)
super().__init__(in_keys=in_keys, out_keys=out_keys)
if not is_seq_of_nested_key(self.in_keys) or not is_seq_of_nested_key(
self.out_keys
):
raise ValueError(
f"invalid in_keys / out_keys:\nin_keys={self.in_keys} \nout_keys={self.out_keys}"
)
if len(self.in_keys) != 1 or len(self.out_keys) != 1:
raise ValueError(
f"Only one in_key/out_key is allowed, got in_keys={self.in_keys}, out_keys={self.out_keys}."
)
# for convenience, convert out_keys to tuples
self._out_keys = [
out_key if isinstance(out_key, tuple) else (out_key,)
for out_key in self._out_keys
]
# update the in_keys for dispatch etc
self.in_keys = self.in_keys + actor.in_keys
# check that the model has parameters
params = TensorDict.from_module(actor)
with params.apply(_stateless_param, device="meta").to_module(actor):
# copy a stateless actor
self.__dict__["functional_actor"] = deepcopy(actor)
# we need to register these params as buffer to have `to` and similar
# methods work properly
def _make_detached_param(x):
if isinstance(x, nn.Parameter):
# we need an nn.Parameter since some modules (RNN) require nn.Parameters
return nn.Parameter(x.data.clone(), requires_grad=requires_grad)
elif x.requires_grad:
raise ValueError(
"Encountered a value that requires gradients but is not an nn.Parameter instance."
)
return x.clone()
self.frozen_params = params.apply(_make_detached_param)
if requires_grad:
# includes the frozen params/buffers in the module parameters/buffers
self.frozen_params = TensorDictParams(self.frozen_params, no_convert=True)
# self._buffers["actor_params"] = params.clone().detach()
# find the sample log-prob key
self.sample_log_prob_key = "sample_log_prob"
def find_sample_log_prob(module):
if hasattr(module, "SAMPLE_LOG_PROB_KEY"):
self.sample_log_prob_key = module.SAMPLE_LOG_PROB_KEY
self.functional_actor.apply(find_sample_log_prob)
if not isinstance(coef, torch.Tensor):
coef = torch.tensor(coef)
self.register_buffer("coef", coef)
def _reset(
self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase
) -> TensorDictBase:
with _set_missing_tolerance(self, True):
tensordict_reset = self._call(tensordict_reset)
return tensordict_reset
def _call(self, tensordict: TensorDictBase) -> TensorDictBase:
# run the actor on the tensordict
action = tensordict.get("action", None)
if action is None:
# being called after reset or without action, skipping
if self.out_keys[0] != ("reward",) and self.parent is not None:
tensordict.set(self.out_keys[0], self.parent.reward_spec.zero())
return tensordict
with self.frozen_params.to_module(self.functional_actor):
dist = self.functional_actor.get_dist(tensordict.clone(False))
# get the log_prob given the original model
log_prob = dist.log_prob(action)
reward_key = self.in_keys[0]
reward = tensordict.get("next").get(reward_key)
curr_log_prob = tensordict.get(self.sample_log_prob_key)
# we use the unbiased consistent estimator of the KL: log_p(x) - log_q(x) when x ~ p(x)
kl = (curr_log_prob - log_prob).view_as(reward)
tensordict.set(("next", *self.out_keys[0]), reward + self.coef * kl)
return tensordict
def _step(
self, tensordict: TensorDictBase, next_tensordict: TensorDictBase
) -> TensorDictBase:
with tensordict.unlock_():
return self._call(tensordict.set("next", next_tensordict)).pop("next")
forward = _call
def transform_output_spec(self, output_spec: CompositeSpec) -> CompositeSpec:
output_spec = super().transform_output_spec(output_spec)
# todo: here we'll need to use the reward_key once it's implemented
# parent = self.parent
in_key = unravel_key(self.in_keys[0])
out_key = unravel_key(self.out_keys[0])
if in_key == "reward" and out_key == "reward":
parent = self.parent
reward_spec = UnboundedContinuousTensorSpec(
device=output_spec.device,
shape=output_spec["full_reward_spec"][parent.reward_key].shape,
)
output_spec["full_reward_spec"] = CompositeSpec(
{parent.reward_key: reward_spec},
shape=output_spec["full_reward_spec"].shape,
)
elif in_key == "reward":
parent = self.parent
reward_spec = UnboundedContinuousTensorSpec(
device=output_spec.device,
shape=output_spec["full_reward_spec"][parent.reward_key].shape,
)
# then we need to populate the output keys
observation_spec = output_spec["full_observation_spec"]
observation_spec[out_key] = reward_spec
else:
observation_spec = output_spec["full_observation_spec"]
reward_spec = UnboundedContinuousTensorSpec(
device=output_spec.device, shape=observation_spec[in_key].shape
)
# then we need to populate the output keys
observation_spec[out_key] = reward_spec
return output_spec