|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# |
| 3 | +# This source code is licensed under the MIT license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | +from __future__ import annotations |
| 6 | + |
| 7 | +import functools |
| 8 | +import math |
| 9 | +from abc import abstractmethod |
| 10 | +from enum import Enum |
| 11 | + |
| 12 | +from tensordict import NestedKey, TensorDictBase |
| 13 | +from tensordict.nn import TensorDictModuleBase |
| 14 | +from torch import nn |
| 15 | + |
| 16 | + |
| 17 | +class MCTSScore(TensorDictModuleBase): |
| 18 | + @abstractmethod |
| 19 | + def forward(self, node): |
| 20 | + pass |
| 21 | + |
| 22 | + |
| 23 | +class PUCTScore(MCTSScore): |
| 24 | + c: float |
| 25 | + |
| 26 | + def __init__( |
| 27 | + self, |
| 28 | + *, |
| 29 | + c: float, |
| 30 | + win_count_key: NestedKey = "win_count", |
| 31 | + visits_key: NestedKey = "visits", |
| 32 | + total_visits_key: NestedKey = "total_visits", |
| 33 | + prior_prob_key: NestedKey = "prior_prob", |
| 34 | + score_key: NestedKey = "score", |
| 35 | + ): |
| 36 | + super().__init__() |
| 37 | + self.c = c |
| 38 | + self.win_count_key = win_count_key |
| 39 | + self.visits_key = visits_key |
| 40 | + self.total_visits_key = total_visits_key |
| 41 | + self.prior_prob_key = prior_prob_key |
| 42 | + self.score_key = score_key |
| 43 | + self.in_keys = [ |
| 44 | + self.win_count_key, |
| 45 | + self.prior_prob_key, |
| 46 | + self.total_visits_key, |
| 47 | + self.visits_key, |
| 48 | + ] |
| 49 | + self.out_keys = [self.score_key] |
| 50 | + |
| 51 | + def forward(self, node: TensorDictBase) -> TensorDictBase: |
| 52 | + win_count = node.get(self.win_count_key) |
| 53 | + visits = node.get(self.visits_key) |
| 54 | + n_total = node.get(self.total_visits_key) |
| 55 | + prior_prob = node.get(self.prior_prob_key) |
| 56 | + node.set( |
| 57 | + self.score_key, |
| 58 | + (win_count / visits) + self.c * prior_prob * n_total.sqrt() / (1 + visits), |
| 59 | + ) |
| 60 | + return node |
| 61 | + |
| 62 | + |
| 63 | +class UCBScore(MCTSScore): |
| 64 | + c: float |
| 65 | + |
| 66 | + def __init__( |
| 67 | + self, |
| 68 | + *, |
| 69 | + c: float, |
| 70 | + win_count_key: NestedKey = "win_count", |
| 71 | + visits_key: NestedKey = "visits", |
| 72 | + total_visits_key: NestedKey = "total_visits", |
| 73 | + score_key: NestedKey = "score", |
| 74 | + ): |
| 75 | + super().__init__() |
| 76 | + self.c = c |
| 77 | + self.win_count_key = win_count_key |
| 78 | + self.visits_key = visits_key |
| 79 | + self.total_visits_key = total_visits_key |
| 80 | + self.score_key = score_key |
| 81 | + self.in_keys = [self.win_count_key, self.total_visits_key, self.visits_key] |
| 82 | + self.out_keys = [self.score_key] |
| 83 | + |
| 84 | + def forward(self, node: TensorDictBase) -> TensorDictBase: |
| 85 | + win_count = node.get(self.win_count_key) |
| 86 | + visits = node.get(self.visits_key) |
| 87 | + n_total = node.get(self.total_visits_key) |
| 88 | + node.set( |
| 89 | + self.score_key, |
| 90 | + (win_count / visits) + self.c * n_total.sqrt() / (1 + visits), |
| 91 | + ) |
| 92 | + return node |
| 93 | + |
| 94 | + |
| 95 | +class MCTSScores(Enum): |
| 96 | + PUCT = functools.partial(PUCTScore, c=5) # AlphaGo default value |
| 97 | + UCB = functools.partial(UCBScore, c=math.sqrt(2)) # default from Auer et al. 2002 |
| 98 | + UCB1_TUNED = "UCB1-Tuned" |
| 99 | + EXP3 = "EXP3" |
| 100 | + PUCT_VARIANT = "PUCT-Variant" |
0 commit comments