You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import diffusers, torch, os
import torch_xla.core.xla_model as xm
pipeline = diffusers.DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, use_safetensors=True, torch_dtype=torch.float16)
# Move the model to the first TPU core
pipeline = pipeline.to(xm.xla_device())
image = pipeline("a cloud tpu winning a kaggle competition", num_inference_steps=20).images[0]
image
I run the above code in kaggle
and get
RuntimeError Traceback (most recent call last)
Cell In[2], line 8
6 # Move the model to the first TPU core
7 pipeline = pipeline.to(xm.xla_device())
----> 8 image = pipeline("a cloud tpu winning a kaggle competition", num_inference_steps=20).images[0]
9 image
File /usr/local/lib/python3.8/site-packages/torch/utils/_contextlib.py:115, in context_decorator.<locals>.decorate_context(*args, **kwargs)
112 @functools.wraps(func)
113 def decorate_context(*args, **kwargs):
114 with ctx_factory():
--> 115 return func(*args, **kwargs)
File /usr/local/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py:1000, in StableDiffusionPipeline.__call__(self, prompt, height, width, num_inference_steps, timesteps, sigmas, guidance_scale, negative_prompt, num_images_per_prompt, eta, generator, latents, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, output_type, return_dict, cross_attention_kwargs, guidance_rescale, clip_skip, callback_on_step_end, callback_on_step_end_tensor_inputs, **kwargs)
997 latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
999 # predict the noise residual
-> 1000 noise_pred = self.unet(
1001 latent_model_input,
1002 t,
1003 encoder_hidden_states=prompt_embeds,
1004 timestep_cond=timestep_cond,
1005 cross_attention_kwargs=self.cross_attention_kwargs,
1006 added_cond_kwargs=added_cond_kwargs,
1007 return_dict=False,
1008 )[0]
1010 # perform guidance
1011 if self.do_classifier_free_guidance:
File /usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File /usr/local/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1169, in UNet2DConditionModel.forward(self, sample, timestep, encoder_hidden_states, class_labels, timestep_cond, attention_mask, cross_attention_kwargs, added_cond_kwargs, down_block_additional_residuals, mid_block_additional_residual, down_intrablock_additional_residuals, encoder_attention_mask, return_dict)
1164 encoder_hidden_states = self.process_encoder_hidden_states(
1165 encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1166 )
1168 # 2. pre-process
-> 1169 sample = self.conv_in(sample)
1171 # 2.5 GLIGEN position net
1172 if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
File /usr/local/lib/python3.8/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
1496 # If we don't have any hooks, we want to skip the rest of the logic in
1497 # this function, and just call forward.
1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1499 or _global_backward_pre_hooks or _global_backward_hooks
1500 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501 return forward_call(*args, **kwargs)
1502 # Do not call functions when jit is used
1503 full_backward_hooks, non_full_backward_hooks = [], []
File /usr/local/lib/python3.8/site-packages/torch/nn/modules/conv.py:463, in Conv2d.forward(self, input)
462 def forward(self, input: Tensor) -> Tensor:
--> 463 return self._conv_forward(input, self.weight, self.bias)
File /usr/local/lib/python3.8/site-packages/torch/nn/modules/conv.py:459, in Conv2d._conv_forward(self, input, weight, bias)
455 if self.padding_mode != 'zeros':
456 return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
457 weight, bias, self.stride,
458 _pair(0), self.dilation, self.groups)
--> 459 return F.conv2d(input, weight, bias, self.stride,
460 self.padding, self.dilation, self.groups)
RuntimeError: Input type (c10::BFloat16) and bias type (c10::Half) should be the same
The text was updated successfully, but these errors were encountered:
❓ Questions and Help
I run the above code in kaggle
and get
The text was updated successfully, but these errors were encountered: