forked from prabhuomkar/pytorch-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
137 lines (105 loc) · 4.91 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright 2020-present pytorch-cpp Authors
#include <torch/torch.h>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <tuple>
#include "rnn_lm.h"
#include "corpus.h"
using data_utils::Corpus;
using torch::indexing::Slice;
int main() {
std::cout << "Language Model\n\n";
// Device
auto cuda_available = torch::cuda::is_available();
torch::Device device(cuda_available ? torch::kCUDA : torch::kCPU);
std::cout << (cuda_available ? "CUDA available. Training on GPU." : "Training on CPU.") << '\n';
// Hyper parameters
const int64_t embed_size = 128;
const int64_t hidden_size = 1024;
const int64_t num_layers = 1;
const int64_t num_samples = 1000; // the number of words to be sampled
const int64_t batch_size = 20;
const int64_t sequence_length = 30;
const size_t num_epochs = 5;
const double learning_rate = 0.002;
// Load "Penn Treebank" dataset
// See https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/language_model/data/
// and https://github.com/wojzaremba/lstm/tree/master/data
const std::string penn_treebank_data_path = "../../../../data/penntreebank/train.txt";
Corpus corpus(penn_treebank_data_path);
auto ids = corpus.get_data(batch_size);
auto vocab_size = corpus.get_dictionary().size();
// Path to the output file (All folders must exist!)
const std::string sample_output_path = "output/sample.txt";
// Model
RNNLM model(vocab_size, embed_size, hidden_size, num_layers);
model->to(device);
// Optimizer
torch::optim::Adam optimizer(model->parameters(), torch::optim::AdamOptions(learning_rate));
// Set floating point output precision
std::cout << std::fixed << std::setprecision(4);
std::cout << "Training...\n";
// Train the model
for (size_t epoch = 0; epoch != num_epochs; ++epoch) {
// Initialize running metrics
double running_loss = 0.0;
double running_perplexity = 0.0;
size_t running_num_samples = 0;
// Initialize hidden- and cell-states.
auto h = torch::zeros({num_layers, batch_size, hidden_size}).to(device).detach();
auto c = torch::zeros({num_layers, batch_size, hidden_size}).to(device).detach();
for (int64_t i = 0; i < ids.size(1) - sequence_length; i += sequence_length) {
// Transfer data and target labels to device
auto data = ids.index({Slice(), Slice(i, i + sequence_length)}).to(device);
auto target = ids.index({Slice(), Slice(i + 1, i + 1 + sequence_length)}).reshape(-1).to(device);
// Forward pass
torch::Tensor output;
std::forward_as_tuple(output, std::tie(h, c)) = model->forward(data, std::make_tuple(h, c));
h.detach_();
c.detach_();
// Calculate loss
auto loss = torch::nn::functional::nll_loss(output, target);
// Update running metrics
running_loss += loss.item<double>() * data.size(0);
running_perplexity += torch::exp(loss).item<double>() * data.size(0);
running_num_samples += data.size(0);
// Backward pass and optimize
optimizer.zero_grad();
loss.backward();
torch::nn::utils::clip_grad_norm_(model->parameters(), 0.5);
optimizer.step();
}
auto sample_mean_loss = running_loss / running_num_samples;
auto sample_mean_perplexity = running_perplexity / running_num_samples;
std::cout << "Epoch [" << (epoch + 1) << "/" << num_epochs << "], Trainset - Loss: "
<< sample_mean_loss << ", Perplexity: " << sample_mean_perplexity << '\n';
}
std::cout << "Training finished!\n\n";
std::cout << "Generating samples...\n";
// Generate samples
model->eval();
torch::NoGradGuard no_grad;
std::ofstream sample_output_file(sample_output_path);
// Initialize hidden- and cell-states.
auto h = torch::zeros({num_layers, 1, hidden_size}).to(device);
auto c = torch::zeros({num_layers, 1, hidden_size}).to(device);
// Select one word-id at random
auto prob = torch::ones(vocab_size);
auto data = prob.multinomial(1).unsqueeze(1).to(device);
for (size_t i = 0; i != num_samples; ++i) {
// Forward pass
torch::Tensor output;
std::forward_as_tuple(output, std::tie(h, c)) = model->forward(data, std::make_tuple(h, c));
// Sample one word id
prob = output.exp();
auto word_id = prob.multinomial(1).item();
// Fill input data with sampled word id for the next time step
data.fill_(word_id);
// Write the word corresponding to the id to the file
auto word = corpus.get_dictionary().word_at_index(word_id.toLong());
word = (word == "<eos>") ? "\n" : word + " ";
sample_output_file << word;
}
std::cout << "Finished generating samples!\nSaved output to " << sample_output_path << "\n";
}