-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path02-mult-restriction.tex
197 lines (189 loc) · 9.5 KB
/
02-mult-restriction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
\section{Multlinear restriction}
The abbreviation $A \lesssim B$ means $A \leq C B$ with some constant $C$ that typically does not depend on functions $f$, but does depend on dimension and Lebesgue exponents.
Dependence on some specific parameters will be indicated by a subscript: $\lesssim_{\epsilon}$.
\begin{theorem}[{\cite{MR2275834}}]\label{thm:mult-restriction}
For every $n\in\N$, $\epsilon>0$, and compact $C^{2}$ hypersurfaces $A_{1}^{0},\dotsc,A_{n}^{0} \subset \R^{n}$ there exist $C_{1},C_{2}<\infty$ such that the following holds.
Denote by $N_{j}(x)$ the unit normal vector to $A_{j}$ at $x$.
Let $A_{j} \subset A_{j}^{0}$, $j=1,\dotsc,n$, be compact subsets and assume that for some $0 < \nu < 1$ and all $x_{j} \in A_{j}$ we have
\[
\abs{ N_{1}(x_{1}) \wedge \dotsb \wedge N_{n}(x_{n}) } > \nu.
\]
For $R>1$ denote by $A_{j}^{R}$ the $R^{-1}$-neighborhood of $A_{j}$.
Then for any functions $f_{j}$ with $\supp \widehat{f_{j}} \subset A_{j}^{R}$ we have
\begin{equation}\label{eq:mult-restriction}
\norm[\Big]{\prod_{j=1}^{n} \sup_{z \in B(y,1)}\abs{f_{j}(z)}}_{L^{2/(n-1)}_{y}(B(0,R))}
\leq C_{1} \nu^{-C_{2}}
R^{-n/2+\epsilon} \prod_{j=1}^{n}\norm{f_{j}}_{2}.
\end{equation}
\end{theorem}
The left-hand side of \eqref{eq:mult-restriction} is morally equal to
\[
\norm[\Big]{\prod_{j=1}^{n} \abs{f_{j}} }_{L^{2/(n-1)}(B(0,R))},
\]
since due to the compact Fourier support the functions $\abs{f_{j}}$ are constant at scale $1$.
However, in some applications it is convenient to use the formally larger expression in \eqref{eq:mult-restriction}.
If the surfaces $A_{j}$ were completely flat, then the Fourier supports $A_{j}^{R}$ would be contained in boxes of size $O(1) \times \dotsm \times O(1) \times O(R^{-1})$, so by the uncertainty principle the functions $f_{j}$ would be essentially constant on boxes of sizes $1 \times \dotsm \times 1 \times R$.
The estimate \eqref{eq:mult-restriction} would then essentially follow from the Loomis--Whitney inequality applied to the functions $\abs{f_{j}}^{2}$.
The $C^{2}$ hypothesis ensures that the surfaces do in fact look flat, but only at scale $R^{-1/2}$, in the sense that an $R^{-1/2}$-ball inside a $C^{2}$ surface fits into a box of dimensions $R^{-1/2} \times \dotsm \times R^{-1/2} \times R^{-1}$.
We will have to use an induction on scales argument to take advantage of this.
It is conjectured that $\nu$ should enter \eqref{eq:mult-restriction} with the same exponent as in the Loomis--Whitney inequality.
This is currently only known for $n=2$ (where it is easy) and $n=3$, see \cite{MR3884636}.
For one of our applications (maximal estimates for the Schr\"odinger equation) it will be important that the constant in \eqref{eq:mult-restriction} only grows with a power of $\nu$.
\begin{proof}[Proof of Theorem~\ref{thm:mult-restriction}]
Let $\MlRs(R,\nu)$ be the smallest constant for which the estimate \eqref{eq:mult-restriction} holds.
By translation invariance the same estimate holds for any ball of radius $R$, not necessarily centered at $0$.
For functions $f_{j}$ with compact Fourier support we have the Bernstein inequality $\norm{f_{j}}_{\infty} \lesssim \norm{f_{j}}_{2}$, and it follows that
\begin{equation}
\label{eq:mult-restriction:trivial}
\MlRs(R,\nu) \lesssim R^{C}.
\end{equation}
Here and later in this proof the implicit constants do not depend on $R,\nu$.
We will use induction on scales to obtain a better bound.
Let $\phi$ be a Schwartz function on $\R^{n}$ with compact Fourier support such that $\abs{\phi} \geq \one_{B(0,2)}$.
For each $R\geq 1$ and $x\in\R^n$ let $\phi_{R^{1/2}}^{x}(y) := \phi(R^{-1/2}(y-x))$.
Then $\supp \widehat{\phi_{R^{1/2}}^{x}} \subset B(0,CR^{-1/2})$, and it follows that $\supp \widehat{\phi_{R^{1/2}}^{x} f_{j}} \subset A_{j}^{C R^{1/2}}$.
Hence
\begin{align*}
\norm[\Big]{\prod_{j=1}^{n} \sup_{z\in B(y,1)}\abs{f_{j}} }_{L^{2/(n-1)}_{y}(B(x,R^{1/2}))}
&\leq
\norm[\Big]{\prod_{j=1}^{n} \sup_{z\in B(y,1)} \abs{\phi_{R^{1/2}}^{x} f_{j}} }_{L^{2/(n-1)}_{y}(B(x,R^{1/2}))}\\
&\leq
\MlRs(R^{1/2},\nu)
\prod_{j=1}^{n}\norm{\phi_{R^{1/2}}^{x} f_{j}}_{2}.
\end{align*}
Averaging this inequality over $x \in B(0,R)$ we obtain
\begin{equation}\label{48}
LHS\eqref{eq:mult-restriction}
\lesssim
\MlRs(R^{1/2},\nu)
\Bigl( R^{-n/2} \int_{B(0,R)} \prod_{j=1}^{n}
\norm{\phi_{R^{1/2}}^{x} f_{j}}_{2}^{2/(n-1)} \dif x \Bigr)^{(n-1)/2}.
\end{equation}
Now for each $1\leq j\leq n$ we split $A_{j} = \cup_{a} A_{j,a}$ into disks of radius $R^{-1/2}$ and make an orthogonal splitting $f_{j} = \sum_{a} f_{j,a}$ such that $\supp \widehat{f_{j,a}} \subset A_{j,a}^{R}$.
Since $A_{j}$ is a $C^{2}$ surface, the set $A_{j,a}^{R}$ is contained in a box $U_{j,a}$ of size $O(R^{-1}) \times O(R^{-1/2}) \times \dotsb \times O(R^{-1/2})$ whose short side points in the normal direction $v_{j,a}$ at some (arbitrary) point on $A_{j,a}$.
Also, for each $j$ the supports of the functions $\widehat{\phi_{R^{1/2}}^{x} f_{j,a}}$ have bounded overlap, and by almost orthogonality we obtain
\begin{equation}\label{50}
\eqref{48} \lesssim
R^{\alpha/2+\epsilon}
\Bigl( R^{-n/2} \int_{B(0,R)} \Bigl(\prod_{j=1}^{n} \sum_{a} \norm{\phi_{R^{1/2}}^{x} f_{j,a}}_{2}^{2} \Bigr)^{1/(n-1)} \dif x \Bigr)^{(n-1)/2}.
\end{equation}
Let
\[
F_{j,a}(x) := \norm{\phi_{R^{1/2}}^{x} f_{j,a}}_{2}^{2}.
\]
By the uncertainty principle we expect $F_{j,a}$ to be approximately constant on tubes of size $R\times R^{1/2}\times \cdots\times R^{1/2}$ whose long side points in the direction $v_{j,a}$.
By the multilinear Kakeya inequality (Corollary~\ref{cor:mult-Kakeya:functions}) we estimate
\begin{align*}
\eqref{50}
&=
\MlRs(R^{1/2},\nu) \Bigl( R^{-n/2} \int_{B(0,R)} \Bigl(\prod_{j=1}^{n} \sum_{a} F_{j,a}(x) \Bigr)^{1/(n-1)} \dif x \Bigr)^{(n-1)/2}\\
&\leq
\MlRs(R^{1/2},\nu) C_{1}' \nu^{-C_{2}'} R^{\epsilon}
\prod_{j=1}^{n} \Bigl( \sum_{a} \sum_{T \in \Tubes_{j,a}} \sup_{x \in T} F_{j,a}(x) \Bigr)^{1/2},
\end{align*}
where $\Tubes_{j,a} = \Tubes_{v_{j,a}}$ is as in Corollary~\ref{cor:mult-Kakeya:functions} with $(R,R^{1/2})$ in place of $(R,r)$.
Here $C_{1}'$ and $C_{2}'$ depend on $\epsilon>0$.
Now we make the uncertainty principle precise.
Fix some Schwartz function with $\one_{B(0,1)} \leq \widehat{\psi} \leq \one_{B(0,2)}$.
For each $j,a$ let $\psi_{j,a}$ be its dilation and modulation such that $\widehat{\psi_{j,a}}$ is adapted to $U_{j,a}$, so that $f_{j,a} = f_{j,a} * \psi_{j,a}$.
Then in particular by H\"older's inequality
\begin{multline*}
\abs{f_{j,a}}(y)^{2}
=
\abs{f_{j,a} * \psi_{j,a}}(y)^{2}
=
\abs[\big]{\int f_{j,a}(y-z) \psi_{j,a}(z) \dif z}^{2}\\
\leq
\Bigl( \int \abs{f_{j,a}}(y-z)^{2} \abs{\psi_{j,a}}(z) \dif z \Bigr)
\Bigl( \int \abs{\psi_{j,a}}(z) \dif z \Bigr)\\
\lesssim
\int \abs{f_{j,a}}(y-z)^{2} \abs{\psi_{j,a}}(z) \dif z
=
(\abs{f_{j,a}}^{2} * \abs{\psi_{j,a}})(x).
\end{multline*}
Therefore for every $x\in T \in \Tubes_{j,a}$ we have
\begin{align*}
F_{j,a}(x)
&\lesssim
\int \Bigl( \int \abs{f_{j,a}}(y-z)^{2} \abs{\psi_{j,a}}(z) \dif z \Bigr) \abs{\phi_{R^{1/2}}^{x}}^{2}(y) \dif y\\
&=
\iint \abs{f_{j,a}}^{2}(y) \abs{\psi_{j,a}}(z) \abs{\phi_{R^{1/2}}^{x}}^{2}(y+z) \dif z \dif y\\
&\lesssim
R^{-1/2} \int \abs{f_{j,a}}^{2}(y) \chi_{T}(y) \dif y,
\end{align*}
where $\chi_{T}$ is a smooth version of the characteristic function.
Inserting this above we obtain
\begin{align*}
\eqref{50}
&\lesssim
\MlRs(R^{1/2},\nu) C_{1}' \nu^{-C_{2}'} R^{\epsilon}
\Bigl( \sum_{a} \sum_{T \in \Tubes_{j,a}} R^{-1/2} \int \abs{f_{j,a}}^{2}(y) \chi_{T}(y) \dif y \Bigr)^{1/2}\\
&\lesssim
\MlRs(R^{1/2},\nu) C_{1}' \nu^{-C_{2}'} R^{\epsilon-n/4}
\prod_{j=1}^{n} \Bigl( \sum_{a} \norm{ f_{j,a} }_{2}^{2} \Bigr)^{1/2}\\
&=
\MlRs(R^{1/2},\nu) C_{1}' \nu^{-C_{2}'} R^{\epsilon-n/4}
\prod_{j=1}^{n} \norm{ f_{j} }_{2}.
\end{align*}
Taking a supremum over all possible $f_{j}$ we obtain
\[
\MlRs(R,\nu)
\leq
\MlRs(R^{1/2},\nu) C_{1}'' \nu^{-C_{2}'} R^{\epsilon-n/4}.
\]
Fix $\epsilon>0$.
If $R^{\epsilon} < C_{1}'' \nu^{-C_{2}'}$ we use the trivial bound \eqref{eq:mult-restriction:trivial}.
Otherwise we can estimate
\[
\MlRs(R,\nu)
\leq
\MlRs(R^{1/2},\nu) R^{2\epsilon-n/4}.
\]
Iterating this bound until we arrive at the trivial bound we will obtain
\[
\MlRs(R,\nu)
\lesssim
\nu^{-C} R^{4\epsilon-n/2}.
\qedhere
\]
\end{proof}
The multilinear restriction inequality is also frequently stated in the following form.
\begin{corollary}
In the setting of Theorem~\ref{thm:mult-restriction} let $\sigma_{j}$ denote the surface measure ($(n-1)$-dimensional Hausdorff measure) on $A_{j}$.
Let also $f_{j} \in L^{2}(A_{j},\sigma_{j})$.
Then for every $\epsilon>0$ and every $R>1$ we have
\begin{equation}
\label{eq:mult-restriction:surface}
\norm[\Big]{\prod_{j=1}^{n} \sup_{z \in B(y,1)}\abs{\widehat{f_{j}\sigma_{j}}(z)}}_{L^{2/(n-1)}_{y}(B(0,R))}
\lesssim_{\nu,\epsilon}
R^{\epsilon} \prod_{j=1}^{n}\norm{f_{j}}_{L^{2}(\sigma_{j})}.
\end{equation}
\end{corollary}
\begin{proof}
Let $\phi_{R}(y) = \phi(y/R)$, where $\phi$ is a Schwartz function with $\abs{\phi} \geq \one_{B(0,2)}$ and $\supp \widehat{\phi} \subset B(0,1)$.
Then
\[
LHS\eqref{eq:mult-restriction:surface}
\leq
\norm[\Big]{\prod_{j=1}^{n} \sup_{z \in B(y,1)}\abs{\phi_{R}\widehat{f_{j}\sigma_{j}}(z)}}_{L^{2/(n-1)}_{y}(B(0,R))}
\lesssim
R^{-n/2+\epsilon} \prod_{j=1}^{n}\norm{\phi_{R}\widehat{f_{j}\sigma_{j}}}_{2},
\]
since
\[
\supp \widehat{\phi_{R}\widehat{f_{j}\sigma_{j}}}
\subset
\supp \widehat{\phi_{R}} + \supp (f_{j}\sigma_{j})
\subset
A_{j}^{R}.
\]
Moreover,
\[
\norm{\phi_{R}\widehat{f_{j}\sigma_{j}}}_{2}
=
\norm{\widehat{\phi_{R}}*(f_{j}\sigma_{j})}_{L^{2}(\R^{n})}
\lesssim
R^{1/2} \norm{f_{j}}_{L^{2}(\sigma_{j})}.
\]
The latter inequality can be seen by subdividing $\R^{n}$ into cubes with side length $R^{-1}$.
\end{proof}