-
Notifications
You must be signed in to change notification settings - Fork 1
/
03-dec-paraboloid.tex
1079 lines (1027 loc) · 51 KB
/
03-dec-paraboloid.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{Decoupling for the paraboloid}
The Fourier decoupling inequality is a kind of $L^{p}$ orthogonality statement for functions with Fourier support close to the paraboloid $\mathbb{P} = \Set{ (\xi,\abs{\xi}^{2}) \given \xi\in\R^{d} }$.
Some of its far-reaching applications will be discussed later on.
It was originally proved in \cite{MR3374964}.
Our presentation is based on the simplified proofs in \cite{MR3592159} and \cite{arxiv:1902.03450}.
For inductive purposes it is convenient to formulate the Fourier support condition in a way that is invariant under affine transformations that preserve the paraboloid.
We will consider functions with Fourier support inside parallelepipeds adapted to the paraboloid $\mathbb{P}$.
Figure~\ref{fig:Fourier-supp} shows the parallelepipeds of scales $2^{-1}$, $2^{-2}$, and $2^{-3}$, respectively, inside the parallelepiped of scale $2^{0}$ (in the case $d=1$).
The picture is self-similar: inside each parallelepiped of a given scale there are $2^{d}$ parallelepipeds, and any parallelepiped can be mapped onto any other by an affine transformation that preserves the collection of all parallelepipeds.
\newcommand{\figparabolicscaling}[1]{
\begin{scope}[black,cm={0.5,0,0,0.25,(0,0)}]
#1
\end{scope}
\begin{scope}[black,cm={0.5,0.5,0,0.25,(0.5,0.25)}]
#1
\end{scope}
}
\newcommand{\figunitball}{\draw (-1.5,-1.5) rectangle (1.5,1.5);}
\begin{figure}\label{fig:Fourier-supp}
\begin{center}
\begin{tabular}{ccc}
\begin{tikzpicture}
\figunitball
\figparabolicscaling{\figunitball}
\end{tikzpicture} &
\begin{tikzpicture}
\figunitball
\figparabolicscaling{\figparabolicscaling{\figunitball}}
\end{tikzpicture} &
\begin{tikzpicture}
\figunitball
\figparabolicscaling{\figparabolicscaling{\figparabolicscaling{\figunitball}}}
\end{tikzpicture}
\end{tabular}
\end{center}
\caption{Fourier support parallelepipeds at scales $2^{-1},2^{-2},2^{-3}$}
\end{figure}
We proceed with a more formal description.
A \emph{dyadic cube} (of side length $\delta$) is a cube of the form $\delta (a + [0,1]^{d})$ with $a \in \Z^{d}$ and $\delta$ a power of $2$.
We will denote by $\Part[Q]{\delta}$ the partition of a dyadic cube $Q$ into dyadic cubes with side length $\delta$ ($\delta$ must be smaller than the side length of $Q$ for this to make sense).
We omit $Q$ from the notation $\Part[Q]{\delta}$ if $Q=[0,1]^{d}$.
For $\theta = a + \delta [0,1]^{d} \in \Part{\delta}$ we will denote by $f_{\theta}$ an arbitrary function of the form $M_{\theta}f$, where $f \in L^{p}(\R^{d+1})$ with $\supp \widehat{f} \subset [-2,2]^{d+1}$ and
\begin{equation}\label{eq:parabolic-scaling}
M_{\theta}f(x,y) = e(a\cdot x + \abs{a}^{2} y) (f \circ L_{\theta})(x,y),
\quad
x\in\R^{d}, y\in\R,
\end{equation}
where $L_{\theta}$ is the linear transformation
\[
L_{\theta} =
\begin{pmatrix}
\delta I_{d} & 0\\
0 & \delta^{2}
\end{pmatrix}
\begin{pmatrix}
I_{d} & (2a_{1},\dotsc,2a_{d})^{T}\\
0 & 1
\end{pmatrix}.
\]
and $I_{d}$ denotes the identity $d\times d$ matrix.
Equivalently, $f_{\theta}$ denotes an arbitrary $L^{p}$ function with the Fourier support condition
\begin{equation}
\label{eq:Fourier-support}
\supp \widehat{f_{\theta}}
\subseteq
(a,\abs{a}^{2}) + L_{\theta}^{*}([-2,2]^{d+n}).
\end{equation}
\noindent\fbox{\parbox{\textwidth}{Roughly speaking, $\supp \widehat{f_{\theta}}$ is contained in a box of size $\delta \times \dotsm \times \delta \times \delta^{2}$ that contains the part of paraboloid over $\theta$.}}
For $1 \leq p,q \leq \infty$ and $\delta>0$, let the \emph{$\ell^{q}L^{p}$ decoupling constant} $\Dec_{d}^{p,q}(\delta)$ be the smallest constant such that the inequality
\begin{equation}\label{eq:dec-const}
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{L^p}
\le
\Dec_{d}^{p,q}(\delta) (\sum_{\theta} \norm{f_{\theta}}_{L^p}^q)^{1/q}
\end{equation}
holds for any functions $f_{\theta}$ as above.
The main decoupling estimate is the following.
\begin{theorem}[{\cite{MR3374964}}]\label{thm:dec-paraboloid}
Let $d \geq 1$ and $2 \leq p \leq \infty$.
Then for every $\epsilon>0$ we have
\begin{equation}\label{eq:dec-paraboloid}
\Dec_{d}^{p,2}(\delta)
\lesssim_{\epsilon}
\begin{cases}
\delta^{-\epsilon}, & 2 \leq p \leq 2(d+2)/d,\\
\delta^{-d/2+(d+2)/p-\epsilon}, & 2(d+2)/d < p \leq \infty.
\end{cases}
\end{equation}
\end{theorem}
\begin{remark}
This is a comment on numerology, or the exponents in \eqref{eq:dec-paraboloid}.
For $p=2$ and $p=\infty$ the inequality \eqref{eq:dec-paraboloid} holds even with $\epsilon = 0$.
For $p=2$ this follows from Plancherel's theorem, and for $p=\infty$ from the triangle inequality.
By a complex interpolation argument that is explained in Section~\ref{sec:dec-interpolation} it will suffice to consider the endpoint $p=2(d+2)/d$ to obtain the inequality \eqref{eq:dec-paraboloid} for all $2 \leq p \leq \infty$.
\end{remark}
\subsection{Optimatity of the decoupling inequality}\label{sec:sharpness}
In this section we show that the estimates in Theorem~\ref{thm:dec-paraboloid} are essentially optimal.
\begin{example}
Consider first $f_{\theta} = M_{\theta} f$, where $f$ is a fixed Schwartz function with $f(0)=1$ and $\hat{f}$ supported in the unit cube.
Then by scaling $\norm{f_{\theta}}_{p} \sim \delta^{-(d+2)/p}$.
On the other hand, $\Re f_{\theta} \gtrsim 1$ on a fixed neigborhood of $0$.
Hence
\[
\norm[\big]{ \sum_{\theta \in \Part{\delta}} f_{\theta} }_{p} \gtrsim \abs{\Part{\delta}} \sim \delta^{-d},
\]
and it follows that
\[
\Dec_{d}^{p,q}(\delta) \gtrsim \delta^{-d+\frac{d}{q}+\frac{d+2}{p}}.
\]
For $q=2$ and $p>2(d+2)/d$ this is the exponent in \eqref{eq:dec-paraboloid} (up to the $\epsilon$ loss).
\end{example}
\begin{example}
Consider next $f_{\theta}(x,y)=\eta(\delta^{2} (x,y)) e(a \cdot x + \abs{a}^{2} y)$, where $\eta$ is a Schwartz function with $\hat\eta$ supported in the unit cube and $a \in \theta$.
Then $\norm{f_{\theta}}_{p} \sim \delta^{-2(d+1)/p}$ and by H\"older's inequality with $2 \leq p \leq \infty$ and orthogonality
\begin{multline*}
\delta^{-2(d+1)(\frac12-\frac1p)} \norm{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{p}
\sim
\norm{\eta(\delta^{2}\cdot)}_{\frac{1}{1/2-1/p}} \norm{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{p}
\geq
\norm{\sum_{\theta \in \Part{\delta}} \eta(\delta^{2}\cdot) f_{\theta}}_{2}\\
\gtrsim
\bigl( \sum_{\theta \in \Part{\delta}} \norm{\eta(\delta^{2}\cdot) f_{\theta}}_{2}^{2} \bigr)^{1/2}
\sim
\delta^{-d/2}\delta^{-2(d+1)/2}.
\end{multline*}
It follows that
\[
\Dec_{d}^{p,q}(\delta) \gtrsim \delta^{\frac{d}{q}-\frac{d}{2}}
\]
for $2 \leq p \leq \infty$, and in the case $q=2$ and $2 \leq p \leq 2(d+2)/d$ this is exacly the exponent in \eqref{eq:dec-paraboloid} (up to the $\epsilon$ loss).
\end{example}
\begin{example}
Finally, consider again the functions in the first example and translate them so that they become essentially disjointly supported.
Then
\[
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{L^p}
\approx
(\sum_{\theta \in \Part{\delta}} \norm{f_{\theta}}_{L^p}^p)^{1/p}
\approx
\abs{\Part{\delta}}^{1/p-1/q} (\sum_{\theta \in \Part{\delta}} \norm{f_{\theta}}_{L^p}^q)^{1/q},
\]
so
\[
\Dec_{d}^{p,q}(\delta) \gtrsim \delta^{d/q-d/p}.
\]
This shows that we cannot expect any estimates for $p<q=2$ other than those that follow by interpolation between orthogonality at $p=2$ and Minkowski's inequality at $p=1$.
\end{example}
\begin{remark}
It is known from \cite[p.~118]{MR1209299} that the $\epsilon$ loss in \eqref{eq:dec-paraboloid} cannot be completely removed in general.
On the other hand, the precise dependence on $\delta$ in \eqref{eq:dec-paraboloid} has not been quantified except in the case $d=1$ \cite{arxiv:1711.01202}.
\end{remark}
\subsection{Basic properties of the decoupling constant}
\subsubsection{Parabolic scaling}\label{sec:parabolic-scaling}
We use functions of the form \eqref{eq:parabolic-scaling} in order to make explicit a scaling invariance of the decoupling inequality.
If $\delta_{0},\delta_{1} \leq 1$ are powers of $2$ and $\theta_{0} \in \Part{\delta_{0}}$, then there is a natural bijection between $\Part{\delta_{1}}$ and $\Part[\theta_{0}]{\delta_{0}\delta_{1}}$ given by the composition of translation ans scaling that maps $[0,1]^{d}$ to $\theta$.
Moreover, if $\theta$ is mapped to $\theta'$ be this bijection, then $M_{\theta'} = M_{\theta_{0}} \circ M_{\theta}$, so we can write $f_{\theta'} = M_{\theta_{0}} \tilde{f}_{\theta}$.
Hence
\begin{align*}
\norm[\big]{\sum_{\theta' \in \Part[\theta_{0}]{\delta_{0}\delta_{1}}} f_{\theta'}}_{p}
&=
\norm[\big]{M_{\theta_{0}} \sum_{\theta \in \Part{\delta_{1}}} \tilde{f}_{\theta}}_{p}\\
&=
\delta_{0}^{-(d+2)/p} \norm[\big]{\sum_{\theta \in \Part{\delta_{1}}} \tilde{f}_{\theta}}_{p}\\
&\leq
\delta_{0}^{-(d+2)/p} \Dec_{d}^{p,q}(\delta_{1}) \bigl( \sum_{\theta \in \Part{\delta_{1}}} \norm{ \tilde{f}_{\theta} }_{p}^q \bigr)^{1/q}\\
&=
\Dec_{d}^{p,q}(\delta_{1}) \bigl( \sum_{\theta \in \Part{\delta_{1}}} \norm{ M_{\theta_{0}} \tilde{f}_{\theta} }_{p}^q \bigr)^{1/q}\\
&=
\Dec_{d}^{p,q}(\delta_{1}) \bigl( \sum_{\theta' \in \Part[\theta_{0}]{\delta_{0}\delta_{1}}} \norm{ \tilde{f}_{\theta'} }_{p}^q \bigr)^{1/q}.
\end{align*}
\subsubsection{Larger Fourier support}\label{sec:dec-larger-Fourier-supp}
The choise of the Fourier support condition $\supp \widehat{f} \subset [-2,2]^{d}$ in $f_{\theta} = M_{\theta} f$ is not particularly important.
In particular, for functions of the form $f_{\theta} = M_{\theta} f$ with $\supp \widehat{f} \subset [-C,C]^{d}$ we obtain
\begin{equation}\label{eq:dec-larger-Fourier-support}
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{L^p}
\lesssim
\Dec_{d}^{p,q}(C\delta) (\sum_{\theta} \norm{f_{\theta}}_{L^p}^q)^{1/q}.
\end{equation}
This is because such $f_{\theta}$ satisfy \eqref{eq:Fourier-support} with a larger dyadic cube (of scale $\leq C\delta$).
\subsubsection{Interpolation}\label{sec:dec-interpolation}
Let $1 \leq p_{0},p_{1},q_{0},q_{1} \leq \infty$ and $0 < \eta < 1$.
Define $p_{\eta},q_{\eta}$ by
\[
\frac{1}{p_{\eta}} = \frac{1-\eta}{p_{0}} + \frac{\eta}{p_{1}},
\quad
\frac{1}{q_{\eta}} = \frac{1-\eta}{q_{0}} + \frac{\eta}{q_{1}}.
\]
Then we have
\begin{equation}\label{eq:dec-interpolation}
\Dec_{d}^{p_{\eta},q_{\eta}}(\delta)
\lesssim
\Dec_{d}^{p_{0},q_{0}}(4\delta)^{1-\eta} \Dec_{d}^{p_{1},q_{1}}(4\delta)^{\eta}.
\end{equation}
This would follow from complex interpolation if we could disregard the Fourier support restrictions, which is of course impossible.
In order to apply a standard complex interpolation result we have to reformulate the decoupling inequality~\eqref{eq:dec-const} as an estimate for a linear operator on an $\ell^{q}L^{p}$ space.
To this end let $\psi$ be a smooth function on $\R^{d+1}$ with $\one_{[-2,2]^{d+1}} \leq \psi \leq \one_{[-4,4]^{d+1}}$.
Define the multiplier operator $\widehat{Tf} := \psi \widehat{f}$.
Since this is a convolution operator with kernel $\check{\psi} \in L^{1}(\R^{d+1})$, it is bounded on any $L^{p}$ space with $1 \leq p \leq \infty$.
It follows that the operators $T_{\theta} := M_{\theta} T M_{\theta}^{-1}$ are bounded uniformly for all dyadic cubes $\theta$.
On the other hand, for an arbitrary function $g \in L^{p}(\R^{d+1})$ the function $T_{\theta} g$ satisfies the support condition in Section~\ref{sec:dec-larger-Fourier-supp}.
It follows that for arbitrary functions $g_{\theta} \in L^{p}(\R^{d+1})$ we have
\[
\norm[\big]{\sum_{\theta \in \Part{\delta}} T_{\theta} g_{\theta}}_{p}
\lesssim
\Dec_{d}^{p,q}(4\delta) (\sum_{\theta} \norm{T_{\theta} g_{\theta}}_{p}^q)^{1/q}
\lesssim
\Dec_{d}^{p,q}(4\delta) (\sum_{\theta} \norm{g_{\theta}}_{p}^q)^{1/q},
\]
where we have used~\eqref{eq:dec-larger-Fourier-support} and the uniform boundedness of the operators $T_{\theta}$.
This is now an $\ell^{q}(\Part{\delta},L^{p}(\R^{d+1})) \to L^{p}(\R^{d+1})$ bound for the linear operator $(g_{\theta})_{\theta} \mapsto \sum_{\theta} T_{\theta} g_{\theta}$.
By complex interpolation we obtain
\[
\norm[\big]{\sum_{\theta \in \Part{\delta}} T_{\theta} g_{\theta}}_{p_{\eta}}
\lesssim
\Dec_{d}^{p_{0},q_{0}}(4\delta)^{1-\eta} \Dec_{d}^{p_{1},q_{1}}(4\delta)^{\eta}
(\sum_{\theta} \norm{g_{\theta}}_{p_{\eta}}^{q_{\eta}})^{1/q_{\eta}}.
\]
On the other hand, for $f_{\theta}$ satisfying the standing Fourier support condition we have $T_{\theta}f_{\theta}=f_{\theta}$, and this implies \eqref{eq:dec-interpolation}.
\subsection{Localization}\label{sec:dec-local}
The freedom to enlarge the Fourier support in Section~\ref{sec:dec-larger-Fourier-supp} can be used to localize decoupling inequalities.
Let $\eta$ be a positive Schwartz function on $\R^{d+1}$ such that $\supp \hat{\eta} \subset B(0,c)$ and $\eta \geq 1$ on $B(0,1)$.
Let $B = B(x,\delta^{-2}) \subset \R^{d+1}$ be a ball of radius $\delta^{-2}$ centered at $x$ and $\eta_{B} := \eta(\delta^{2}(\cdot-x))$.
Then the functions $f_{\theta}\eta_{B}$ are as in Section~\ref{sec:dec-larger-Fourier-supp}, so we obtain
\begin{equation}\label{eq:dec-local:com-F-supp-cutoff}
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta} \eta_{B}}_{p}
\lesssim
\Dec_{d}^{p,q}(C\delta) \bigl( \sum_{\theta} \norm{\eta_{B} f_{\theta}}_{p}^q \bigr)^{1/q}.
\end{equation}
It is sometimes convenient to use other kinds of weights.
For a ball $B=B(c_B, r_B)\subset \R^{d+1}$ and $E>d+1$, define an associated weight
\begin{equation}\label{eq:w_B}
w_{B, E}(x):=\Bigl( 1+\frac{\abs{x-c_B}}{r_B} \Bigr)^{-E}.
\end{equation}
The exponent $E$ will not be important and will be usually omitted from the notation.
From the estimate \eqref{eq:dec-local:com-F-supp-cutoff} and using $\one_{B} \leq \eta_{B} \lesssim w_{B}$ we immediately obtain
\[
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta} }_{L^{p}(B)}
\lesssim
\Dec_{d}^{p,q}(C\delta) \bigl( \sum_{\theta} \norm{f_{\theta}}_{L^{p}(w_{B})}^q \bigr)^{1/q}
\]
for balls $B$ of radius $R^{2}$.
It is inconvenient that the weights on the left-hand and the right-hand side differ.
This can be remedied by the averaging argument in Lemma~\ref{lem:1-w} below, and the following estimate can be obtained for $q \leq p$.
\begin{equation}\label{eq:dec-local:w_B}
\norm[\big]{\sum_{\theta \in \Part{\delta}} f_{\theta}}_{L^p(w_{B})}
\lesssim
\Dec_{d}^{p,q}(\delta) (\sum_{\theta} \norm{f_{\theta}}_{L^p(w_{B})}^q)^{1/q}.
\end{equation}
Similarly we can localize the rescaled decoupling inequality in Section~\ref{sec:parabolic-scaling} to balls of size $(\delta_{0}\delta_{1})^{-2}$.
\subsubsection{Power weights}\label{sec:cutoff}
A key property of the weights \eqref{eq:w_B} is the inequality
\begin{equation}
\label{eq:1-w}
\one_B
\lesssim
\sum_{B' \in \calB(B,R)} w_{B'}
\lesssim
w_B
\end{equation}
that holds for all balls $B \subset \R^{n}$ and all $0<R$ that are smaller than the radius of $B$.
Here and later $\calB(B,R)$ denotes a boundedly overlapping covering of a set $B$ by balls of radius $R$.
The implicit constants in \eqref{eq:1-w} do not depend on $B$ and $R$.
The following result allows to deduce inequalities for $L^{p}(w_{B})$ norms from inequalities for $L^{p}(\one_{B})$ norms.
It is necessitated by the fact that inequalities converse to \eqref{eq:1-w} do not hold.
\begin{lemma}[{\cite[Lemma 4.1]{MR3592159}}]
\label{lem:1-w}
Let $\calW$ be the collection of all weights, that is, positive, integrable functions on $\R^n$.
Fix $R>0$ and $E>n$.
Let $O_1,O_2 : \calW\to[0,\infty]$ be any functions with the following properties.
\begin{enumerate}
\item\label{it:O:1<w} $O_1(\one_B)\leq O_2(w_{B,E})$ for all balls $B\subset \R^n$ with radius $R$
\item\label{it:O:subadd} $O_1(\alpha u+\beta v)\le \alpha O_1(u)+\beta O_1(v)$, for each $u,v\in\calW$ and $\alpha,\beta > 0$
\item\label{it:O:supadd} $O_2(\alpha u+\beta v)\ge \alpha O_2(u)+\beta O_2(v)$, for each $u,v\in\calW$ and $\alpha,\beta > 0$
\item\label{it:O:monotone} If $u\le v$ then $O_i(u)\le O_i(v)$.
\item\label{it:O:continuous} If $(u_{j})_{j} \subset \calW$ is a monotonically increasing sequence with $u_{j} \to u \in \calW$ pointwise almost everywhere, then $O_1(u) = \lim_{j} O_1(u_{j})$.
\end{enumerate}
Then for each ball $B \subset \R^{n}$ with radius $R$ we have
\[
O_1(w_{B,E})
\lesssim_{n,E}
O_2(w_{B,E})
\]
The implicit constant depends only on $n$ and $E$.
\end{lemma}
\begin{proof}
Let $\calB := \calB(\R^n,R)$.
Note that
\[
w_B(x)
\leq
C \sum_{B'\in\calB} w_B(c_{B'}) \one_{B'}(x)
\]
and that
\[
\sum_{B'\in\calB}w_{B'}(x)w_B(c_{B'})
\leq
C w_B(x)
\]
for a sufficiently large constant $C=C(n,E)>0$.
Hence
\begin{align*}
O_{1}(w_{B})
&\leq
\sup_{\calB' \subset \calB \ \textrm{finite}} O_{1}\bigl( C \sum_{B'\in\calB'} w_B(c_{B'}) \one_{B'} \bigr)
&\text{by \eqref{it:O:continuous}}\\
&\leq
\sup_{\calB' \subset \calB \ \textrm{finite}} C \sum_{B'\in\calB'} w_B(c_{B'}) O_{1}( \one_{B'} )
&\text{by \eqref{it:O:subadd}}\\
&\leq
C \sup_{\calB' \subset \calB \ \textrm{finite}} \sum_{B'\in\calB} w_B(c_{B'}) O_{2}(w_{B'})
&\text{by \eqref{it:O:1<w}}\\
&\leq
C^{2} \sup_{\calB' \subset \calB \ \textrm{finite}} O_{2}\bigl( C^{-1} \sum_{B'\in\calB} w_{B'} w_B(c_{B'}) \bigr)
&\text{by \eqref{it:O:supadd}}\\
&\leq
C^{2} O_{2}(w_{B}).
&\text{by \eqref{it:O:monotone}}
&\qedhere
\end{align*}
\end{proof}
\begin{remark}
\label{rem:1-w}
Lemma~\ref{lem:1-w} will be usually applied with functionals of the form
\begin{align}
O_1(v) &:= \norm{f}_{L^p(v)}^p \label{eq:O_1:practical}\\
O_2(v) &:= A (\sum_{i}\norm{f_i}_{L^p(v)}^{q})^{\frac{p}{q}}, \label{eq:O_2:practical}
\end{align}
where $1 \leq q \leq p$.
It is clear that conditions \eqref{it:O:subadd} and \eqref{it:O:monotone} hold for these choices.
The condition \eqref{it:O:supadd} follows from the reverse Minkowski inequality in $\ell_{\frac{q}{p}}$:
\begin{multline*}
O_2(v+w)
=
A \Bigl( \sum_{i} \bigl( \int \abs{f_{i}}^{p} v + \int \abs{f_{i}} w \bigr)^{q/p} \Bigr)^{p/q}\\
\geq
A \Bigl( \sum_{i} \bigl( \int \abs{f_{i}} v \bigr)^{q/p} \Bigr)^{p/q}
+
A \Bigl( \sum_{i} \bigl( \int \abs{f_{i}} w \bigr)^{q/p} \Bigr)^{p/q}
=
O_2(v) + O_2(w)
\end{multline*}
\end{remark}
\begin{remark}
We recall the proof of the reverse Minkowski inequality, which is basically identical to the proof of the direct Minkowski inequality.
Let $0<r\leq 1$ and let $f : X \times Y \to [0,\infty]$ be a function such that $0 < \norm{\int_{Y} f}_{L^{r}(X)} < \infty$.
Then by reverse H\"older inequality we have
\begin{multline*}
\int_{X} \abs[\big]{\int_{Y} f(x,y) \dif y}^{r} \dif x
=
\int_{Y} \int_{X} f(x,y') \abs[\big]{\int_{Y} f(x,y) \dif y}^{r-1} \dif x \dif y'\\
\geq
\int_{Y} \Bigl( \int_{X} f(x,y')^{r} \dif x \Bigr)^{1/r} \Bigl( \int_{X} \abs[\big]{\int_{Y} f(x,y) \dif y}^{r} \dif x \Bigr)^{1-1/r} \dif y'.
\end{multline*}
The reverse H\"older inequality is just the usual H\"older inequality in which one of the terms is brought to the other side.
Rearranging we obtain
\[
\Bigl( \int_{X} \abs[\big]{\int_{Y} f(x,y) \dif y}^{r} \dif x \Bigr)^{1/r}
\geq
\int_{Y} \Bigl( \int_{X} f(x,y')^{r} \dif x \Bigr)^{1/r} \dif y'.
\]
\end{remark}
\subsubsection{Reverse H\"older inequality}
We close this section with the following reverse H\"older inequality.
\begin{corollary}[{cf.\ \cite[Corollary 4.1]{MR3592159}}]
\label{cor:rev-holder}
For each $1 \leq t \leq p < \infty$, each $E>n$, each $R>0$ and $\delta>0$ with $R\delta \geq 1$, each function $f : \R^{n} \to \C$ with $\diam(\supp \hat{f}) \lesssim \delta$, and each ball $B \subset \R^n$ with radius $R$ we have
\begin{equation}
\label{eq:rev-holder}
\norm{f}_{\avL^p(w_{B,E})}
\lesssim
(R\delta)^{n/t-n/p}
\norm{f}_{\avL^t (w_{B,\frac{E t}{p}})},
\end{equation}
with the implicit constant independent of $R$, $\delta$, $B$, and $f$.
\end{corollary}
Here and later we denote normalized $L^{p}$ norms by
\begin{equation}
\label{eq:avL}
\norm{f}_{\avL^{p}(B)} := \abs{B}^{-1/p} \norm{f}_{L^{p}(B)},
\quad
\norm{f}_{\avL^{p}(w_{B})} := \abs{B}^{-1/p} \norm{f}_{L^{p}(w_{B})}.
\end{equation}
\begin{proof}
Let $\eta$ be a positive Schwartz function on $\R^n$ with $\one_{B(0,1)}\le \eta$ and such that $\supp (\widehat{\eta}) \subset B(0,1)$.
We can thus write
\[
\norm{f}_{L^p(B)}
\le
\norm{\eta_B f}_{L^p(\R^n)},
\]
where $\eta_{B}$ is an appropriate $L^{\infty}$-scaling and translation of $\eta$.
Let $\theta$ be a Schwartz function on $\R^{n}$ such that $\hat{\theta} = 1$ for $\abs{\theta} \leq 10$.
Since
\[
\diam(\supp \widehat{\eta_{B} f})
\leq
\diam(\supp \widehat{\eta_{B}}) + \diam(\supp \hat{f})
\lesssim
1/R + \delta
\lesssim
\delta,
\]
we have that
\[
\eta_B f
=
(\eta_B f)* \theta_B,
\]
where $\theta_{B}$ is an appropriate $L^{1}$-scaling and modulation of $\theta$.
By Young's convolution inequality with exponents
\[
\frac{1}p=\frac1{t}+\frac1{r}-1=\frac{1}{t}-\frac1{r'}
\]
we can write
\[
\norm{\eta_B f}_{L^p(\R^n)}
\le
\norm{\eta_B f}_{L^t(\R^n)} \norm{\theta_B}_{L^r(\R^n)}
\lesssim
\delta^{n/r'} \norm{f}_{L^t(\eta_B^{t})}.
\]
Rearranging this inequality and estimating $\eta_{B} \lesssim w_{B,E}^{1/p}$ we obtain
\[
\abs{B}^{-1/p} \norm{f}_{L^p(B)}
\lesssim_{n,E}
(R\delta)^{n/r'} \abs{B}^{-1/t} \norm{f}_{L^t(w_{B,E}^{t/p})}
\]
for any $E>0$.
Now we can apply Lemma~\ref{lem:1-w} with
\begin{align*}
O_{1}(v) &:= R^{-n} \int \abs{f}^{p} v,\\
O_{2}(v) &:= A (R\delta)^{n/t-n/p} R^{-n p/t} \Bigl( \int \abs{f}^{t} v^{t/p} \Bigr)^{p/t}.
\qedhere
\end{align*}
\end{proof}
\subsection{Linear versus multilinear decoupling}
\subsubsection{Transversality}\label{sec:gen:transverse}
One of the main advantages of the decoupling inequality \eqref{eq:dec-const} it can be reduced to the corresponding multilinear inequality involving transverse pieces of the paraboloid.
This is the objective of this Section~\ref{sec:gen:transverse}.
We fix $d\geq 1$, and if $d>1$ we assume that Theorem~\ref{thm:dec-paraboloid} is already known with $d$ replaced by $d-1$.
All constants are allowed to depend on $d$ and $p$, but not on other parameters unless indicated.
Recall that in the multilinear restriction theorem we called subsets $S_{1},\dotsc,S_{d+1}$ of a $d$-dimensional hypersurface in $\R^{d+1}$ \emph{$\nu$-transverse} if $\abs{N_{1} \wedge \dotsb \wedge N_{d+1}} > \nu$ for any unit normal vectors $N_{j}$ to $S_{j}$.
The same notion of transversality will be used here.
However, we also have to understand what it means in terms of the parametrization of the paraboloid $\mathbb{P}$ as the graph of $\Phi(\xi) = \abs{\xi}^{2}$ on the unit cube $[0,1]^{d}$.
It is easy to see that $(-2\xi,1) \in \R^{d}\times\R$ is a normal vector to $\mathbb{P}$ at the point $(\xi,\Phi(\xi))$.
Indeed,
\[
(-2\xi,1) \cdot \partial_{j} (\xi,\Phi(\xi))
=
(-2\xi,1) \cdot (e_{j}, 2\xi_{j})
=
0.
\]
For $\xi$ in the unit cube the length of the vector $(-2\xi,1)$ is $\sim 1$, so the pieces of the graph of $\Phi$ over $\alpha_{1},\dotsc,\alpha_{d+1} \subseteq [0,1]^{d}$ are $\nu$-transverse iff for any $\xi_{j}\in\alpha_{j}$ we have
\begin{multline*}
\nu < \abs[\big]{
\begin{pmatrix} -2\xi_{1} \\ 1 \end{pmatrix} \wedge\dotsb\wedge \begin{pmatrix} -2\xi_{d+1} \\ 1 \end{pmatrix}
}
=
\abs[\big]{
\begin{pmatrix} 2\xi_{d+1}-2\xi_{1} \\ 0 \end{pmatrix} \wedge\dotsb\wedge \begin{pmatrix} 2\xi_{d+1}-2\xi_{d} \\ 0 \end{pmatrix} \begin{pmatrix} -2\xi_{d+1} \\ 1 \end{pmatrix}
}\\
=
\abs[\big]{
2\xi_{d+1}-2\xi_{1} \wedge\dotsb\wedge 2\xi_{d+1}-2\xi_{d}
}.
\end{multline*}
In this case we also call $\alpha_{1},\dots,\alpha_{d+1}\subset [0,1]^{d}$ \emph{$\nu$-transverse}.
For illustrative purposes we note that the quantity in the last display is comparable to the volume of the convex hull of $\xi_{1},\dotsc,\xi_{d+1}$.
\subsubsection{Notation}
We will use the following notation for $L^{p}$ norms and $\ell^{q}$ norms:
\[
L^{p}_{x\in X} F(x) := \Bigl( \int_{x\in X} \abs{F(x)}^{p} \Bigr)^{1/p},
\quad
\ell^{q}_{\theta \in \Part{\delta}} F(\theta) := \Bigl( \int_{\theta \in \Part{\delta}} \abs{F(\theta)}^{q} \Bigr)^{1/q}.
\]
We will also use averaged $L^{p}$ norms
\[
\norm{f}_{\avL^{p}(B)}:=(\abs{B}^{-1} \int_B \abs{f}^p )^{1/p},
\quad
\norm{f}_{\avL^{p}(w_B)}:=(\abs{B}^{-1} \int \abs{f}^p w_B)^{1/p}
\]
%For $\sigma>0$ and $E\subset \R^d$, we will use $N_{\sigma}(E)$ to denote the $\sigma$-neighborhood of the set $E$.
%For a non-negative number $a$, we will $\lfloor a\rfloor$ to denote the greatest integer less than or equal to $a$, and $\lceil a\rceil$ to denote the least integer greater than or equal to $a$.
Given $f_{\theta}$, $\theta\in\Part{\delta}$, we write here and later
\[
f := \sum_{\theta\in\Part{\delta}} f_{\theta}
\quad\text{and}\quad
f_{\alpha} := \sum_{\theta \in \Part[\alpha]{\delta}} f_{\theta}
\]
for dyadic cubes $\alpha$ of scale $\geq \delta$.
For positive numbers $A_1, \dotsc, A_{d+1}$, we abbreviate
\[
\avprod A_{i} := \bigl(\prod_{i=1}^{d+1} A_{i}\bigr)^{1/(d+1)}.
\]
For $K \in 4^{\N}$, a positive number $\nu_{K}>0$ that depends on $d,K$ and will be specified in the proof of Proposition~\ref{prop:bourgain-guth-arg}, and $0 < \delta < K^{-1}$ the \emph{multilinear decoupling constant} $\MulDec^{p,2}_{d}(\delta, K)$ is the smallest constant such that the inequality
\begin{equation}
\label{eq:multilin-Dec}
L^{p}_{x\in\R^{d+1}} \avprod \norm{ f_{\alpha_{i}} }_{\avL^{p}(B(x,K))}
\le \MulDec^{p,2}_{d}(\delta, K)
\avprod \ell^{2}_{\theta \in \Part[\alpha_i]{\delta}} \norm{f_\theta}_{L^p(\R^{d+1})}
\end{equation}
holds for every $\nu_{K}$-transverse tuple $\alpha_{1},\dotsc,\alpha_{d+1} \in \Part{K^{-1}}$.
The left-hand side of \eqref{eq:multilin-Dec} should be considered morally equivalent to $\norm{ \avprod \abs{f_{R_{i}}}}_{p}$, since by the uncertainty principle the functions $f_{R_{i}}$ are morally constant at scale $K$.
However, as noticed in \cite{MR3592159}, inductive arguments are substantially simpler with an additional average.
\subsubsection{Lower dimensional decoupling}\label{sec:gen:lower-dim}
\begin{lemma}\label{lem:hyperplane-dec}
Let $2 \leq p \leq \infty$, $\calH \subset \R^{d}$ be an affine hyperplane and $\sigma \in 2^{-\N}$.
Then
\begin{equation}
\label{eq:hyperplane-dec}
\norm[\Big]{\sum_{\substack{\beta \in \Part{\sigma},\\ 2\beta\cap \calH\neq \emptyset}} f_{\beta} }_{p}
\lesssim
\Dec^{p,2}_{d-1}(\sigma)
\ell^{2}_{\beta \in \Part{\sigma}} \norm{f_{\beta}}_{p}.
\end{equation}
\end{lemma}
\begin{proof}
For $d=1$ the claim is trivial since the number of summands is bounded uniformly in $\sigma$, so we assume $d\geq 2$.
By an affine transformation we may assume that $\dist(\calH,0) \lesssim \sigma$.
Then by rotation in $\R^{d}$ we may assume that $\calH$ is the hyperplane $\Set{\xi_{d}=\const}$ (to do that we may have to split $\beta$'s into finitely many collections and replace them by slightly larger cubes after the rotation).
\begin{center}
\begin{tabular}{ccc}
\begin{tikzpicture}[scale=0.25]
\draw (0,0) rectangle (8,8);
\begin{scope}[shift={(0,3)}]
\draw (-0.5,0) node[left] {$\calH$} -- (5,5.5);
\draw (0,0) rectangle (1,1) rectangle (2,2) rectangle (3,3) rectangle (4,4) rectangle (5,5);
\draw (0,1) rectangle (1,2) rectangle (2,3) rectangle (3,4) rectangle (4,5);
\end{scope}
\end{tikzpicture} &
\begin{tikzpicture}[scale=0.25]
\draw (0,0) rectangle (8,8);
\begin{scope}%[shift={(0,3)}]
\draw (-0.5,0) node[left] {$\calH$} -- (5,5.5);
\draw (0,0) rectangle (1,1) rectangle (2,2) rectangle (3,3) rectangle (4,4) rectangle (5,5);
\draw (0,1) rectangle (1,2) rectangle (2,3) rectangle (3,4) rectangle (4,5);
\end{scope}
\end{tikzpicture} &
\begin{tikzpicture}[scale=0.25]
\draw (0,0) rectangle (8,8);
\begin{scope}[rotate=-45]
\draw (-0.5,0) node[left] {$\calH$} -- (5,5.5);
\draw (0,0) rectangle (1,1) rectangle (2,2) rectangle (3,3) rectangle (4,4) rectangle (5,5);
\draw (0,1) rectangle (1,2) rectangle (2,3) rectangle (3,4) rectangle (4,5);
\end{scope}
\end{tikzpicture}
\end{tabular}
\end{center}
Let $\beta\in\Part{\sigma}$ be $C\sigma$-close to $\calH$ and write $\beta=\beta'\times\beta_{d}$ with $\beta'\subset\R^{d-1}$ and $\beta_{d}\subset\R$.
Denote by $\Box(\beta)$ the box over $\beta$ as in \eqref{eq:Fourier-support}.
The crucial geometric obseravtion is that $\Box(\beta)$ is contained in a $C\sigma^{2}$-neighborhood of $\Box(\beta') \times \beta_{d}$.
Hence by \eqref{eq:dec-larger-Fourier-support} for each fixed $x_{d}\in\R$ we can apply the $(d-1)$-dimensional case of \eqref{eq:dec-const} to the functions $f_{\beta}(\cdot,x_{d},\cdot)$ of $d$ variables:
\[
\norm{ \sum_{\beta} f_{\beta}(\cdot,x_{d},\cdot) }_{L^{p}(\R^{d})}
\lesssim
\Dec^{p,2}_{d-1}(\sigma) \ell^{2}_{\beta} \norm{ f_{\beta}(\cdot,x_{d},\cdot) }_{L^{p}(\R^{d})}.
\]
By Minkowski's inequality it follows that
\begin{multline*}
\norm{ \sum_{\beta} f_{\beta} }_{L^{p}(\R^{d+1})}
=
L^{p}_{x_{d}\in\R} \norm{ \sum_{\beta} f_{\beta}(\cdot,x_{d},\cdot) }_{L^{p}(\R^{d})}
\lesssim
\Dec^{p,2}_{d-1}(\sigma) L^{p}_{x_{d}\in\R} \ell^{2}_{\beta} \norm{ f_{\beta}(\cdot,x_{d},\cdot) }_{L^{p}(\R^{d})}\\
\leq
\Dec^{p,2}_{d-1}(\sigma) \ell^{2}_{\beta} L^{p}_{x_{d}\in\R} \norm{ f_{\beta}(\cdot,x_{d},\cdot) }_{L^{p}(\R^{d})}
=
\Dec^{p,2}_{d-1}(\sigma) \ell^{2}_{\beta} \norm{ f_{\beta} }_{L^{p}(\R^{d+1})}.
\qedhere
\end{multline*}
\end{proof}
\subsubsection{Bourgain--Guth argument}\label{sec:gen:bourgain-guth}
We let $d\geq 1$ and assume that Theorem~\ref{thm:dec-paraboloid} holds with $d$ replaced by $d-1$.
In the case $d=1$ this hypothesis is vacuous.
From H\"older's inequality, it follows that
\begin{equation}\label{180713e3.4}
\MulDec_{d}^{p,2}(\delta, K)
\lesssim
\Dec_{d}^{p,2}(\delta).
\end{equation}
The Bourgain--Guth argument shows that the converse inequality also holds up to some lower-dimensional terms.
To be precise, we will prove
\begin{proposition}\label{prop:linear-vs-multilinear-dec}
Let $2 \leq p \leq 2(d+1)/(d-1)$.
Then for each $\epsilon>0$ there exists $K$ such that
\begin{equation}
\Dec_{d}^{p,2}(\delta)
\lesssim_{\epsilon}
\delta^{-\epsilon}
+ \delta^{-\epsilon} \max_{\delta\le \delta'\le 1; \delta' \text{dyadic}} \MulDec_{d}^{p,2}(\delta', K).
\end{equation}
\end{proposition}
Proposition~\ref{prop:linear-vs-multilinear-dec} is proved by iterating the following result $O(\frac{\abs{\log\delta}}{\log K})$ many times after choosing $K$ large enough depending on $\epsilon$ so that $C_{\epsilon} \leq K^{\epsilon}$.
\begin{proposition}
\label{prop:bourgain-guth-arg}
Let $2 \leq p \leq 2(d+1)/(d-1)$ and $\epsilon>0$.
Then for every $K$ that is a power of $4$ and $0<\delta<1/K$ we have
\begin{equation}
\label{eq:BG-arg}
\Dec_{d}^{p,2}(\delta)
\leq
C_{\epsilon} K^{\epsilon} \Dec_{d}^{p,2}(\delta K^{1/2})
+ C_{K} \MulDec_{d}^{p,2}(\delta, K).
\end{equation}
\end{proposition}
\begin{proof}[Proof of Proposition~\ref{prop:bourgain-guth-arg}]
Fix functions $f_{\theta}$, $\theta\in\Part{\delta}$.
Let $B \subset \R^{d+1}$ be a ball of radius $K$ and
\[
S_{B} := \Bigl( \sum_{\alpha\in\Part{K^{-1}}} \norm{f_{\alpha}}_{L^{p}(B)}^{2} \Bigr)^{1/2}.
\]
We distinguish two cases.
The first case is that there exists an affine hyperplane $\calH_{B}$ of $\R^{d}$ such that
\begin{equation}
\label{eq:small-away-from-hyperplane}
\norm[\Big]{ \sum_{\beta\in\Part{K^{-1/2}} : 2\beta \cap \calH_{B} = \emptyset} f_{\beta} }_{L^{p}(B)} \leq S_{B}.
\end{equation}
In this case we use Lemma~\ref{lem:hyperplane-dec} (for $d>1$; for $d=1$ triangle inequality suffices since there are only boundedly many summands in this case) and a simple localization argument as in Section~\ref{sec:dec-local} to obtain
\begin{multline*}
\norm[\Big]{ \sum_{\substack{\beta\in\Part{K^{-1/2}} \\ 2\beta \cap \calH_{B} \neq \emptyset}} f_{\beta} }_{L^{p}(B)}
\lesssim_{\epsilon}
K^{\epsilon} \Bigl( \sum_{\substack{\beta \in \Part{K^{-1/2}} \\ 2\beta \cap \calH_{B} \neq \emptyset}} \norm{ f_{\beta} }_{L^{p}(w_{B})}^{2} \Bigr)^{1/2}\\
\leq
K^{\epsilon} \Bigl( \sum_{\beta \in \Part{K^{-1/2}}} \norm{ f_{\beta} }_{L^{p}(w_{B})}^{2} \Bigr)^{1/2}.
\end{multline*}
If \eqref{eq:small-away-from-hyperplane} fails, then for every proper affine hyperplane $\calH$ of $\R^{d}$ there is a dyadic cube $\alpha \in \Part{K^{-1}}$ such that $\alpha$ is at least $K^{-1/2}$ away from $\calH$ and $\norm{f_{\alpha}}_{L^{p}(B)} \geq c_{K} S_{B}$.
We can therefore inductively choose such $\alpha_{1},\dotsc,\alpha_{d+1}$ in such a way that $\alpha_{k}$ is $K^{1/2}$ away from some affine hyperplane passing through $\alpha_{1},\dotsc,\alpha_{k-1}$.
In particular the collection $\alpha_{1},\dotsc,\alpha_{d+1}$ is $\nu_{K}$-transverse for some $\nu_{K}>0$ depending only on $d$ and $K$ and
\[
\norm{f}_{L^{p}(B)}
\leq
C_{K} S_{B}
\leq
C_{K} \avprod \norm{f_{\alpha_{i}}}_{L^{p}(B)},
\]
where $C_{K}$ are constants depending only on $d,K$.
Hence in both cases we obtain
\begin{multline*}
\norm{\sum_{\theta\in\Part{\delta}} f_{\theta}}_{L^{p}(B)}
\leq
\Bigl( \sum_{\alpha\in\Part{K^{-1}}} \norm{f_{\alpha}}_{L^{p}(B)}^{2} \Bigr)^{1/2}
+
C_{\epsilon} K^{\epsilon} \Bigl( \sum_{\beta \in \Part{K^{-1/2}}} \norm{ f_{\beta} }_{L^{p}(w_{B})}^{2} \Bigr)^{1/2}\\
+
C_{K} \sum_{\alpha_{1},\dotsc,\alpha_{d+1}\in\Part{K^{-1}}} \avprod \norm{f_{\alpha_{i}}}_{L^{p}(B)},
\end{multline*}
where the latter sum runs over all $\nu_{K}$-transverse tuples.
Replacing all $L^{p}(B)$ norms by averaged versions $\avL^{p}(B)$ and integrating this inequality over all $K$-balls $B\subset\R^{d+1}$ we obtain
\begin{align}
\notag
\norm{f}_{L^{p}(\R^{d+1})}
&=
L^{p}_{x \in \R^{d+1}} \norm{f}_{\avL^{p}(B(x,K))}\\
\label{eq:BG:small} & \leq
L^{p}_{x \in \R^{d+1}} \Bigl( \sum_{\alpha\in\Part{K^{-1}}} \norm{f_{\alpha}}_{\avL^{p}(B)}^{2} \Bigr)^{1/2}\\
\label{eq:BG:variety}&+
C_{\epsilon} K^{\epsilon} L^{p}_{x \in \R^{d+1}} \Bigl( \sum_{\beta \in \Part{K^{-1/2}}} \norm{ f_{\beta} }_{\avL^{p}(w_{B(x,K)})}^{2} \Bigr)^{1/2}\\
\label{eq:BG:transverse}&+
C_{K} \sum_{\substack{\alpha_{1},\dotsc,\alpha_{d+1}\in\Part{K^{-1}}\\\nu\text{-transverse}}} L^{p}_{x \in \R^{d+1}} \avprod \norm{f_{\alpha_{i}}}_{L^{p}(B(x,K))},
\end{align}
In the term \eqref{eq:BG:small}, by Minkowski's inequality and scaling we obtain
\begin{align*}
\eqref{eq:BG:small}
&\leq
\Bigl( \sum_{\alpha\in\Part{K^{-1}}} (L^{p}_{x \in \R^{d+1}} \norm{f_{\alpha}}_{\avL^{p}(B)})^{2} \Bigr)^{1/2}\\
&=
\Bigl( \sum_{\alpha\in\Part{K^{-1}}} \norm{f_{\alpha}}_{L^{p}(\R^{d+1})})^{2} \Bigr)^{1/2}\\
&\leq
\Dec^{p,2}_{d}(\delta K) \Bigl( \sum_{\alpha\in\Part{\delta}} \norm{f_{\alpha}}_{L^{p}(\R^{d+1})})^{2} \Bigr)^{1/2}.
\end{align*}
The same argument is also applied to \eqref{eq:BG:variety}.
Note that by scaling $\Dec_{d}^{p,2}(\delta K) \leq \Dec_{d}^{p,2}(\delta K^{1/2})$, so the estimate for \eqref{eq:BG:small} can be absorbed in the estimate for \eqref{eq:BG:variety}.
In the last term \eqref{eq:BG:transverse} by definition of the multilinear decoupling constant \eqref{eq:multilin-Dec} we have
\begin{align*}
\eqref{eq:BG:transverse}
&\leq
C_{K} \MulDec^{p,2}_{d}(\delta,K) \sum_{\substack{\alpha_{1},\dotsc,\alpha_{d+1}\in\Part{K^{-1}}\\\nu\text{-transverse}}} \avprod \Bigl( \sum_{\theta\in\Part[\alpha_{i}]{\delta}} \norm{ f_{\theta} }_{L^{p}(\R^{d+1})}^{2} \Bigr)^{1/2}\\
&\leq
C_{K} \MulDec^{p,2}_{d}(\delta,K) \Bigl( \sum_{\theta\in\Part{\delta}} \norm{ f_{\theta} }_{L^{p}(\R^{d+1})}^{2} \Bigr)^{1/2},
\end{align*}
since $\Part[\alpha_{i}]{\delta} \subset \Part{\delta}$ and there are only $C_{K}$ choices of $\alpha_{1},\dotsc,\alpha_{d+1}$.
\end{proof}
% \end{document}
% \endinput
% \noindent\fbox{\parbox{\textwidth}{From here on this is a rough sketch}}
\subsection{Bourgain--Demeter iteration}
We will use two different moves to estimate the left-hand side of \eqref{eq:multilin-Dec}:
\begin{enumerate}
\item $L^{2}$ orthogonality.
This move allows to pull $\ell^{2}_{\tau}$ norms out of the inner $L^{p}$ norm.
This only works for $p=2$ and at an appropriate spatial scale given by the uncertainty principle.
\item Multilinear Kakeya.
This move allows to increase the radius of integration in the inner $L^{p}$ norm so that we have a chance of applying $L^{2}$ orthogonality again.
\end{enumerate}
These moves only work for specific combinations of Lebesgue exponents and scales.
\subsubsection{$L^2$ orthogonality}
\label{sec:L2-orth}
For every $0<\delta<1$ and every ball $B \subset \R^{d+1}$ of radius $\delta^{-1}$ we have
\begin{equation}\label{eq:L2-orth}
\norm[\Big]{\sum_{\theta\in\Part{\delta}}f_\theta }_{L^2(w_B)}
\lesssim
\ell^{2}_{\theta\in\Part{\delta}}\norm{f_\theta }_{L^2(w_B)}.
\end{equation}
It is important that this estimate holds already on balls of radius $\delta^{-1}$ given by the uncertainty principle.
To see \eqref{eq:L2-orth} let $\eta$ be a bump function adapted to the ball $B$ with $\abs{\eta} \sim 1$ on $B$.
Then
\[
\norm[\Big]{\sum_{\theta\in\Part{\delta}}f_\theta }_{L^2(B)}
\lesssim
\norm[\Big]{\sum_{\theta\in\Part{\delta}} \eta f_\theta }_{L^2(\R^{d+1})}
\lesssim
\ell^{2}_{\theta\in\Part{\delta}}\norm{\eta f_\theta }_{L^2(\R^{d+1})}
\lesssim
\ell^{2}_{\theta\in\Part{\delta}}\norm{f_\theta }_{L^2(w_{B})}
\]
by Plancherel's theorem, since the Fourier supports $\supp \widehat{\eta f_{\theta}}$ have bounded overlap (in fact, their projections onto $\R^{d}$ already have bounded overlap).
The estimate \eqref{eq:L2-orth} now follows from Lemma~\ref{lem:1-w}.
\subsubsection{Ball inflation}\label{sec:ball-inflation}
\begin{lemma}[Ball inflation, $\ell^{t}L^{t}$ version]
\label{lem:ball-inflation}
Let $0 < \rho \leq K^{-1}$.
Let $\alpha_1,\dotsc,\alpha_{d+1} \in \Part{K^{-1}}$ be a $\nu$-transverse collection of cubes.
Let $B\subset \R^{d+1}$ be a ball of radius $\rho^{-2}$.
Then for each $1 \leq t < \infty$ and $\epsilon>0$ we have
\begin{equation}\label{eq:ball-inflation:homogeneous}
\avL^{\frac{d+1}{d} t}_{x \in B} \avprod \ell^{t}_{\tau_i \in \Part[\alpha_i]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})}
\lesssim_{\nu,\epsilon} \rho^{-\epsilon}
\avprod \ell^{t}_{\tau_i \in \Part[\alpha_i]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}.
\end{equation}
\end{lemma}
\begin{proof}
For each $\tau \in \Part{\rho}$ with center $c_{\tau}$ we cover $\R^{d+1}$ by a family $\Tubes_\tau$ of pairwise disjoint boxes (tubes) with $d$ short sides of length $\rho^{-1}$ and $1$ long side of length $\rho^{-2}$ pointing in the normal direction $N_{\mathbb{P}}(c_{\tau})$.
Let $\Tubes_{\tau}(B) := \Set{ T \in \Tubes_{\tau} \given T\cap B \neq \emptyset}$ and let $T_\tau(x) \in \Tubes_{\tau}$ denote the unique tube containing $x$.
By the multilinear Kakeya inequality (Corollary~\ref{cor:mult-Kakeya:functions}) we obtain
\begin{align*}
\MoveEqLeft
LHS\eqref{eq:ball-inflation:homogeneous}^{(d+1)t/d}\\
&=
\abs{B}^{-1} \int_{x\in B} \prod_{i=1}^{d+1} \Bigl( \sum_{\tau \in \Part[\alpha_{i}]{\rho}} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho)})}^{t} \Bigr)^{1/d}\\
&\lesssim_{\epsilon,\nu} \abs{B}^{-1} \rho^{-\epsilon} \rho^{-(d+1)}
\prod_{i=1}^{d+1} \Bigl( \sum_{\tau \in \Part[\alpha_{i}]{\rho}} \sum_{T\in \Tubes_{\tau}(B)} \sup_{x \in T} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho)})}^{t} \Bigr)^{1/d}\\
&\sim \rho^{-\epsilon}
\prod_{i=1}^{d+1} \Bigl( \sum_{\tau \in \Part[\alpha_{i}]{\rho}} \rho^{d} \sum_{T\in \Tubes_{\tau}(B)} \sup_{x \in T} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho)})}^{t} \Bigr)^{1/d}.
\end{align*}
To conclude the proof it remains to verify that
\[
\rho^{d} \sum_{T\in \Tubes_{\tau}(B)} \sup_{x \in T} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho)})}^{t}
\lesssim
\norm{f_{\tau}}_{\avL^{t}(w_{B})}^{t}.
\]
This inequality is morally true because each $f_{\tau}$ is constant at scale $1/\rho$ and the number of summands is of the order $\rho^{-d}$, so the left-hand side is a normalized $\avL^{t}$ norm.
We make this explanation precise.
Let $\psi_{\tau}$ be an $L^{1}$ normalized adapted bump function such that $f_{\tau} = f_{\tau} * \psi_{\tau}$.
Then
\begin{multline*}
\norm{ f_\tau }_{\avL^t(w_{B(x, 1/\rho)})}^t
\sim
\rho^{d+1} \int \abs{f_\tau * \psi_{\tau}}^t(u) w_{B(x, 1/\rho)}(u) \dif u\\
\leq
\rho^{d+1} \norm{\psi_{\tau}}_{L^{1}}^{t-1}
\int (\abs{f_\tau}^{t} * \abs{\psi_{\tau}})(u) w_{B(x, 1/\rho)}(u) \dif u\\
\lesssim
\rho^{d+1} \int \abs{f_\tau}^{t}(u) (\abs{\psi_{\tau}}*w_{B(x, 1/\rho)})(u) \dif u.
\end{multline*}
For $x\in T \in \Tubes_{\tau}$ we have $\rho^{d+1} \abs{\psi_{\tau}}*w_{B(y, \rho^{-l})} \lesssim \tilde{w}_{T}$, where $\tilde{w}_{T}$ is an $L^{1}$ normalized bump function adapted to $T$, hence $\norm{\tilde{w}_{T}}_{\infty} \sim \rho^{d+2}$, so
\begin{multline*}
\rho^{d} \sum_{T\in \Tubes_{\tau}(B)} \sup_{x \in T} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho)})}^{t}
\lesssim
\rho^{d} \sum_{T\in \Tubes_{\tau}(B)} \int \abs{f_{\tau}}^{t} \tilde{w}_{T}\\
\lesssim
\rho^{2d+2} \int \abs{f_{\tau}}^{t} w_{B}
\sim
\norm{f_{\tau}}_{\avL^{t}(w_{B})}^{t}.
\qedhere
\end{multline*}
\end{proof}
\begin{corollary}[Ball inflation, $\ell^{q}L^{t}$ version]
\label{cor:ball-inflation:ell-r}
In the setting of Lemma~\ref{lem:ball-inflation} let $1 \leq q \leq t < \infty$.
Then
\begin{equation}\label{eq:ball-inflation:inhomogeneous}
\avL^{\frac{d+1}{d} t}_{x \in B} \avprod \ell^{q}_{\tau_i \in \Part[\alpha_i]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})}
\lesssim_{\nu,\epsilon} \rho^{-\epsilon}
\avprod \ell^{q}_{\tau_i \in \Part[\alpha_i]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}.
\end{equation}
\end{corollary}
\begin{proof}
Let
\[
\calP_{i,l} := \Set[\Big]{ \tau \in \Part[\alpha_i]{\rho} \given 2^{-l-1} < \frac{\norm{f_{\tau}}_{\avL^{t}(w_B)}}{\max_{\tau' \in \Part[\alpha_i]{\rho}} \norm{f_{\tau'}}_{\avL^{t}(w_B)}} \leq 2^{-l}}
\]
and partition
\[
\Part[\alpha_{i}]{\rho} = \Bigl( \bigcup_{l=0}^{\tilde{l}} \calP_{i,l} \Bigr) \cup \calP_{i,\mathrm{rest}}
\]
with $\tilde{l} \sim \log \rho^{-1}$.
Then
\[
\ell^{q}_{\tau_i \in \Part[\alpha_i]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})}
\leq
\sum_{l_{i} \in \Set{0,\dotsc,\tilde{l}} \cup \Set{\mathrm{rest}}} \ell^{q}_{\tau_i \in \calP_{i,l_{i}}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})},
\]
and since there are at most $C \log\rho^{-1}$ summands we may restrict the $\ell^{q}$ norm on the left-hand side of \eqref{eq:ball-inflation:homogeneous} to $\tau_{i} \in \calP_{i,l_{i}}$ for some choice of $l_{i} \in \Set{0,\dotsc,\tilde{l}} \cup \Set{\mathrm{rest}}$.
Since $q \leq t$, by H\"older's inequality and Lemma~\ref{lem:ball-inflation} we obtain
\begin{multline*}
\avL^{\frac{d+1}{d} t}_{x \in B} \avprod \ell^{q}_{\tau_i \in \calP_{i,l_{i}}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})}\\
\leq
\bigl( \avprod \abs{\calP_{i,l_{i}}}^{1/q-1/t} \bigr) \avL^{\frac{d+1}{d} t}_{x \in B} \avprod \ell^{t}_{\tau_i \in \calP_{i,l_{i}}} \norm{f_{\tau_i}}_{\avL^{t}(w_{B(x,1/\rho)})}\\
\lesssim_{\nu,\epsilon} \rho^{-\epsilon}
\bigl( \avprod \abs{\calP_{i,l_{i}}}^{1/q-1/t} \bigr)
\avprod \ell^{t}_{\tau_i \in \calP_{i,l_{i}}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}.
\end{multline*}
It remains to show that
\[
\abs{\calP_{i,l}}^{1/q-1/t}
\ell^{t}_{\tau_i \in \calP_{i,l}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}
\lesssim
\ell^{q}_{\tau_i \in \Part[\alpha_{i}]{\rho}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}
\]
for every $l \in \Set{0,\dotsc,\tilde{l}} \cup \Set{\mathrm{rest}}$.
For $l \in \Set{0,\dotsc,\tilde{l}}$ we have in fact
\[
\abs{\calP_{i,l}}^{1/q-1/t}
\ell^{t}_{\tau_i \in \calP_{i,l}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}
\sim
\abs{\calP_{i,l}}^{1/q} \max_{\tau_i \in \calP_{i,l}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}
\sim
\ell^{q}_{\tau_i \in \calP_{i,l}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)},
\]
while for $l=\mathrm{rest}$ we have
\[
\abs{\calP_{i,\mathrm{rest}}}^{1/q-1/t}
\ell^{t}_{\tau_i \in \calP_{i,\mathrm{rest}}} \norm{f_{\tau_i}}_{\avL^{t}(w_B)}
\lesssim
\abs{\Part[\alpha_{i}]{\rho}}^{1/q} 2^{-\tilde{l}}
\max_{\tau' \in \Part[\alpha_{i}]{\delta}} \norm{f_{\tau'}}_{\avL^{t}(w_B)},
\]
and the claim follows provided that $\tilde{l}$ is a sufficienly large multiple of $\log \rho^{-1}$.
\end{proof}
\subsubsection{Proof of Theorem~\ref{thm:dec-paraboloid} for $p=2\frac{d+1}{d}$}
The proof of Theorem~\ref{thm:dec-paraboloid} in the range $2 \leq p \leq 2\frac{d+1}{d}$ is easier than in the general case and also historically it appeared earlier \cite{MR3038558}.
By interpolation it suffices to consider $p=2\frac{d+1}{d}$.
In view of Proposition~\ref{prop:linear-vs-multilinear-dec} it suffices to estimate the multilinear decoupling constant.
Throughout this section let $\alpha_1,\dotsc,\alpha_{d+1} \in \Part{K^{-1}}$ be $\nu_{K}$-transverse cubes.
For $\rho \in 2^{-\N}$ we define the quantity
\begin{equation}\label{eq:Bourgain-Demeter-A}
A(\rho)
:=
L^{p}_{x} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{2}(w_{B(x,1/\rho)})}.
\end{equation}
We caution the reader that the quantities denoted by $A$ in \cite{MR3592159} would correspond to our $A$ with $L^{p}_{x}$ replaced by $\avL^{p}_{x\in B}$ for a large ball $B$.
\begin{proposition}
\label{prop:iter:low-p}
We have for $p = 2 \frac{d+1}{d}$ and $\epsilon>0$
\begin{equation}
\label{eq:iter:low-p}
A(\rho)
\lesssim_{K,\epsilon}
\rho^{-\epsilon} A(\rho^{2})
\end{equation}
\end{proposition}
\begin{proof}
Using ball inflation (Lemma~\ref{lem:ball-inflation}) with $t=2$ we obtain
\begin{align*}
A(\rho)
&=
L^{p}_{x} \avL^{p}_{\tilde{x} \in B(x,1/\rho^{2})} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{2}(w_{B(\tilde{x},1/\rho)})}\\
&\lesssim_{K,\epsilon} \rho^{-\epsilon}
L^{p}_{x} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{2}(w_{B(x,1/\rho^{2})})}
\end{align*}
By $L^{2}$ orthogonality we have
\begin{equation}\label{eq:L2-orth-scale-rho^2}
\norm{f_{\tau}}_{\avL^{2}(w_{B(x,1/\rho^{2})})}
\lesssim
\ell^{2}_{\tau' \in \Part[\tau]{\rho^{2}}}\norm{f_{\tau'}}_{\avL^{2}(w_{B(x,1/\rho^{2})})},
\end{equation}
and the conclusion follows.
\end{proof}
Now we relate the quantity $A$ with the multilinear decoupling inequality.
Let $\rho \leq (2K)^{-1}$.
Then
\begin{equation}\label{eq:triv-est-by-A}
\begin{split}
LHS\eqref{eq:multilin-Dec}
&=
L^{p}_{x} \avL^{p}_{\tilde{x} \in B(x,1/(2\rho))} \avprod \norm{f_{\alpha_i}}_{\avL^p(B(\tilde{x},K))}\\
\text{by H\"older }&\leq
L^{p}_{x} \avprod \avL^{p}_{\tilde{x} \in B(x,1/(2\rho))} \norm{f_{\alpha_i}}_{\avL^p(B(\tilde{x},K))}\\
&\lesssim
L^{p}_{x} \avprod \norm{f_{\alpha_i}}_{\avL^p(B(x,1/\rho))}\\
\text{by Minkowski}&\leq
L^{p}_{x} \avprod \ell^{1}_{\theta\in\Part[\alpha_i]{\rho}} \norm{f_{\theta}}_{\avL^p(B(x,1/\rho))} \\
\text{by H\"older }&\leq
\rho^{-d/2}
L^{p}_{x} \avprod \ell^{2}_{\theta\in\Part[\alpha_i]{\rho}} \norm{f_{\theta}}_{\avL^p(B(x,1/\rho))}\\
\text{by reverse H\"older}&\lesssim
\rho^{-d/2}
L^{p}_{x} \avprod \ell^{2}_{\theta\in\Part[\alpha_i]{\rho}} \norm{f_{\theta}}_{\avL^2(w_{B(x,1/\rho)})}\\
&=
\rho^{-d/2}
A(\rho)
\end{split}
\end{equation}
On the other hand, for any $\rho$ by H\"older's and Minkowski's inequalities we obtain
\begin{multline}
\label{eq:trivial-est-for-A}
A(\rho)
\leq
\avprod L^{p}_{x} \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{p}(w_{B(x,1/\rho)})}
\leq
\avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} L^{p}_{x} \norm{f_{\tau}}_{\avL^{p}(w_{B(x,1/\rho)})}\\
\sim
\avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{L^{p}(\R^{d+1})}.
\end{multline}
Using \eqref{eq:triv-est-by-A}, iterating \eqref{eq:iter:low-p} $m$ times, and using \eqref{eq:trivial-est-for-A} at the end we obtain for $\delta = \rho^{2^{m}}$ the estimate
\[
LHS~\eqref{eq:multilin-Dec}
\lesssim_{K,m,\epsilon} \rho^{-d/2} \rho^{-\epsilon} \dotsm \rho^{-2^{m-1}\epsilon}
\avprod \ell^{2}_{\theta\in \Part[\alpha_i]{\delta}} \norm{f_{\theta}}_{L^{p}(\R^{d+1})},
\]
so that
\[
\MulDec^{p,2}_{d}(\delta,K) \lesssim_{K,m,\epsilon} \delta^{-d 2^{-m+1}-\epsilon}.
\]
Choosing $m$ large enough this gives $\MulDec^{p,2}_{d}(\delta,K) \lesssim_{K,\epsilon} \delta^{-\epsilon}$, and this suffices to conclude the proof of Theorem~\ref{thm:dec-paraboloid}.
\subsubsection{Proof of Theorem~\ref{thm:dec-paraboloid} for $p=2\frac{d+2}{d}$}
For $p > 2 \frac{d+1}{d}$ we will have to apply ball inflation with some $t>2$.
This necessitates some additional branching of the estimates since orthogonality is only available in $L^{2}$.
\begin{proposition}
\label{prop:iter}
We have for $p = 2\frac{d+2}{d}$ and $\epsilon>0$
\begin{equation}
\label{eq:iter:high-p}
A(\rho)
\lesssim_{K,\epsilon}
\rho^{-\epsilon} A(\rho^{2})^{1/2}
\Bigl( \Dec_{d}^{p,2}(\delta/\rho) \avprod \ell^{2}_{\theta \in \Part[\alpha_i]{\delta}} \norm{ f_{\theta} }_{p} \Bigr)^{1/2}
\end{equation}
\end{proposition}
\begin{proof}
Using ball inflation (Corollary~\ref{cor:ball-inflation:ell-r}) with $q=2$ and $t=p d/(d+1)$ we obtain
\begin{align*}
A(\rho)
&=
L^{p}_{x} \avL^{p}_{\tilde{x} \in B(x,1/\rho^{2})} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{2}(w_{B(\tilde{x},1/\rho)})}\\
\text{by H\"older } &\lesssim
L^{p}_{x} \avL^{p}_{\tilde{x} \in B(x,1/\rho^{2})} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{t}(w_{B(\tilde{x},1/\rho)})}\\
\text{by Cor.~\ref{cor:ball-inflation:ell-r} } &\lesssim_{K,\epsilon} \rho^{-\epsilon}
L^{p}_{x} \avprod \ell^{2}_{\tau\in \Part[\alpha_i]{\rho}} \norm{f_{\tau}}_{\avL^{t}(w_{B(x,1/\rho^{2})})}\\
\text{by H\"older } &\leq \rho^{-\epsilon}