-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path81-max-schrodinger-refined.tex
784 lines (730 loc) · 33.5 KB
/
81-max-schrodinger-refined.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
\documentclass[biblatex]{pzorin-note}
\usepackage{booktabs}
\input{macros.tex}
%GENERAL
\newcommand{\eit}{e^{i t \Delta}}
\newcommand{\eir}{e^{i r \Delta}}
\newcommand{\bbS}{\mathbb{S}}
\newcommand{\RefStr}{\mathrm{RefStr}}
\newcommand{\MultRefStr}{\mathrm{MultRefStr}}
\newcommand{\FrStr}{\mathrm{FrStr}}
\newcommand{\bB}{\mathfrak{B}} % ball Big
\newcommand{\bM}{\mathfrak{M}} % ball Medium
\newcommand{\bS}{\mathfrak{S}} % ball Smal
\newcommand{\bBp}{\mathfrak{B}'} % ball Big previous scale
\newcommand{\bMp}{\mathfrak{M}'} % ball Medium previous scale
\newcommand{\bSp}{\mathfrak{S}'} % ball Small previous scale
\newcommand{\bO}{\mathfrak{O}} % ball Out
\newcommand{\bI}{\mathfrak{I}} % ball In
\newcommand{\bOp}{\mathfrak{O}'} % ball Out previous scale
\newcommand{\bIp}{\mathfrak{I}'} % ball In previous scale
\begin{document}
In this note we recover the main results of \cite{MR3842310} and \cite{arxiv:1805.02775} without any pigeonholing.
Also, Proposition~\ref{prop:fractal-strichartz} is slightly more refined than \cite[Proposition 3.1]{arxiv:1805.02775} and combines the results for all dimensions $\alpha$ in one estimate.
Some text is copied from the cited articles.
\subsection*{Notation}
We write $A\lesssim B$ if $A\leq CB$ for some absolute constant $C$, $A \sim B$ if $A\lesssim B$ and $B\lesssim A$; $A\ll B$ if $A$ is much less than $B$; $A\lessapprox B$ if $A\leq C_\epsilon R^\epsilon B$ for any $\epsilon>0, R>1$.
Sometimes we also write $A\lesssim B$ if $A\leq C_\epsilon B$ for some constant $C_\epsilon$ depending on $\epsilon$ (when the dependence on $\epsilon$ is unimportant).
By an $r$-ball (cube) we mean a ball (cube) of radius (side length) $r$.
An $r\times\cdots\times r \times L$-tube (box) means a tube (box) with radius (short sides length) $r$ and length $L$.
For a set $\calS$, $\#\calS$ denotes its cardinality.
\section{Wave packet decomposition}
We ignore all tails and pretend that functions are compactly suported in space and in frequency.
Real wave packet decomposition can be found in \cite{MR3454378}.
Let $f \in L^{2}(\R^{n})$ with $\supp \hat{f} \subset B^{n}(0,1)$.
If $\tau \subset B^{n}(0,1)$ is a cube, then $f_{\tau}$ is defined by $\widehat{f_{\tau}} = \hat{f} \one_{\tau}$.
Given $1 \leq K \leq R^{1/2}$, $\tau$ of side length $1/K$, and $B \subset \R^{n}$ ball of radius $R/K$ we define $f_{\tau,B}$ to be $f_{\tau}$ smoothly truncated to $B$, so that its Fourier support remains inside $2\tau$.
Let $\bBp = \bBp_{\tau, B}$ be the tube of length $R$ and radius $R/K$ whose central line starts at $(c(B),0)$ and points in the direction $G(c(\tau))$.
Here $c(\tau)$ is the center of $\tau$ and for $\xi \in B^{n}(0,1)$ we write $G(\xi):=\frac{(-2\xi,1)}{\abs{(-2\xi,1)}} \in \bbS^n$.
There is a one-to-one correspondence between $\bBp$ and $(\tau, B)$, so we will also write $f_{\bBp} = f_{\tau,B}$.
Then $\eit f_{\bBp}$ is essentially supported in $\bBp$ for $t\leq R$.
Also,
\begin{equation}
\label{eq:orthogonality}
\ell^{2}_{\bBp} \norm{f_{\bBp}}_{2}
\lessapprox
\norm{f}_{2}.
\end{equation}
\section{Linear refined Strichartz}
\label{sec:LRS}
In the following table we list the names that we use for regions of different sizes in $\R^{n+1}$.
If two sizes are given, then the first one is the size in the space direction and the second in the time direction.
Tubes (regions that are longer in the time direction than they are wide in the space direction) can also have different orientations.
\begin{center}
\begin{tabular}{ccc} \toprule
Object & Size before scaling & Size after scaling\\ \midrule
$\bB$ & $R$ & \\
Slab & $R \times R^{1/2}$ & \\
$\bM$ & $R^{1/2}$ & \\
$\bBp$ & $R^{3/4} \times R$ & $R^{1/2}$\\
$slab$ & $R^{3/4}$ & $R^{1/2} \times R^{1/4}$\\
$\bMp$ & $R^{1/2} \times R^{3/4}$ & $R^{1/4}$\\
\bottomrule
\end{tabular}
\end{center}
The following possible inclusions will be relevant:
\[
\bB \supset Slab \supset \bM, \quad
\bB \supset \bBp \supset slab \supset \bMp \supset \bM.
\]
If we write that a tube is contained in another tube we imply that also the directions match.
\begin{theorem} [Linear refined Strichartz in dimension $n+1$] \label{thm-LRS}
Let $p = \frac{2(n+2)}{n}$.
Suppose that $f: \R^n \rightarrow \C$ has frequency supported in $B^n(0,1)$.
Then
\begin{equation}
\label{LRS}
\ell^{p}_{Slab \subset \bB} \ell^{2}_{\bM \subset Slab} \norm{ \eit f }_{L^{p}(\bM)}
\lessapprox
\norm{ f }_{L^2}.
\end{equation}
\end{theorem}
\cite[Theorem 3.1]{MR3842310} can be recovered using the fact that $-\frac{1}{n+2} = 1/p - 1/2$.
The nice thing about our version is that lots of dyadic pigeonholing is replaced by Minkowski's inequality.
The proof uses the Bourgain-Demeter $\ell^2$ decoupling theorem, together with induction on the radius and parabolic rescaling.
First we recall the decoupling result of Bourgain and Demeter.
\begin{theorem}[{\cite{MR3374964}}]
\label{bourdem}
Let $n\geq 1$ and $p:=\frac{2(n+2)}{n}$.
Suppose that the $R^{-1}$-neighborhood of the unit paraboloid in
$\R^{n+1}$ is divided into $R^{n/2}$ disjoint rectangular boxes $\tau$, each with dimensions $R^{-1/2}\times\dotsm\times R^{-1/2} \times R^{-1}$.
Suppose $\widehat F_\tau$ is supported in $\tau$ and $F = \sum_\tau F_\tau$.
Then on each ball $B \subset \R^{n+1}$ of radius $\geq R$ we have
\[
\norm{ F }_{L^{p}(B)}
\lessapprox
\big( \sum_\tau \norm{ F_\tau }_{L^{p}(w_{B})}^2 \big)^{1/2}.
\]
\end{theorem}
\begin{proof}[Proof of Theorem~\ref{thm-LRS}]
For $R\geq 1$ let $\RefStr(R)$ denote the smallest constant such that the inequality
\begin{equation} \label{LRS-const}
\ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab} \norm{ \eit f }_{L^{p}(\bM)}
\leq
\RefStr(R) \norm{ f }_{L^2}
\end{equation}
holds for that value of $R$.
It is clear that $\RefStr(R) \lesssim R^{O(1)}$.
It suffices to show that
\begin{equation}\label{eq:RS-recursion}
\RefStr(R) \lessapprox \RefStr(R^{1/2}).
\end{equation}
Applying this inequality $\log\log R$ times and using the trivial estimate at the end we will obtain $\RefStr(R) \lessapprox 1$.
We make a wave packet decomposition $f = \sum_{\bBp} f_{\bBp}$ at scale $K=R^{1/4}$.
For each cap $\tau$ and each $\bM$ there is approximately one $\bBp$ with direction $\tau$ that intersects $\bM$.
Hence the decoupling theorem tells us that
\begin{equation}
\norm{ e^{i t \Delta} f }_{L^{p}(\bM)}
\lessapprox
\ell^{2}_{\bBp \supset \bM} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}.
\end{equation}
Substituting this on the left-hand side of \eqref{LRS} we obtain
\[
LHS\eqref{LRS}
\lessapprox
\ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab} \ell^{2}_{\bBp} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}.
\]
By Minkowski's inequality this is
\[
\leq
\ell^{2}_{\bBp} \ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}.
\]
By orthogonality \eqref{eq:orthogonality}, for a fixed $\bBp$ it suffices to show
\[
\ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}
\lessapprox
\RefStr(R^{1/2}) \norm{f_{\bBp}}_{2}.
\]
Now we partition $\bBp$ into slabs denoted by $slab$ (with a small $s$) and each $slab$ into tubes denoted by $\bMp$.
Then since the long side of $\bBp$ is not very close to being horizontal, each $Slab$ intersects only boundedly many $slab \subset \bBp$, and for every choice of $Slab$ and $\bMp$ there are only boundedly many $\bM \subset Slab \cap \bMp$.
Hence
\begin{multline*}
\ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
=
\ell^{p}_{Slab} \ell^{2}_{slab} \ell^{2}_{\bM \subset Slab \cap slab} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\lesssim
\ell^{p}_{slab} \ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab \cap slab} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
=
\ell^{p}_{slab} \ell^{p}_{Slab} \ell^{2}_{\bMp \subset slab} \ell^{2}_{\bM \subset Slab \cap \bMp} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\leq
\ell^{p}_{slab} \ell^{2}_{\bMp \subset slab} \ell^{p}_{Slab} \ell^{2}_{\bM \subset Slab \cap \bMp} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\lesssim
\ell^{p}_{slab} \ell^{2}_{\bMp \subset slab} \ell^{p}_{Slab} \ell^{p}_{\bM \subset Slab \cap \bMp} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\lesssim
\ell^{p}_{slab} \ell^{2}_{\bMp \subset slab} \ell^{p}_{\bM \subset \bMp} \one_{\bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\lesssim
\ell^{p}_{slab} \ell^{2}_{\bMp \subset slab} \norm{ \eit f_{\bBp} }_{L^{p}(\bMp)}.
\end{multline*}
The right-hand side is analogous to the left-hand side of \eqref{LRS}.
By parabolic rescaling the right-hand side can be estimated by
\[
\RefStr(R^{1/2}) \norm{f_{\bBp}}_{2}.
\]
This closes the induction on radius and completes the proof.
\end{proof}
\section{Mixed norm multilinear Kakeya}
By scaling the inequality
\[
\int \prod_{j=0}^{n} f_{j}(x_{0},\dotsc,x_{n})
\lesssim
\prod_{j=0}^{n} \norm{ \norm{f_{j}}_{L^{p}_{x_{j}}} }_{L^{q}_{x_{(j)}}}
\]
can only hold if $q=np'$.
The usual Loomis--Whitney inequality is the case $p=\infty$.
The case $p=q=n+1$ is just H\"older's inequality.
The intermediate cases follow by interpolation.
We need a similar mixed norm version of the Bennett--Carbery--Tao multilinear Kakeya inequality which we now recall.
\begin{theorem}[{\cite{MR2275834}}] \label{MK}
Let $S_j \subset \bbS^{m-1}$, $j=1,\dotsc,k$, be $\nu$-transverse in the sense that for any vectors $v_j\in S_j$ we have
\[
\abs{v_1\wedge \dotsb \wedge v_k} \geq \nu.
\]
Suppose that $l_{j,a}$ are lines in $\R^m$ and that the direction of $l_{j,a}$ lies in $S_j$.
Let $T_{j,a}$ be the characteristic function of the $1$-neighborhood of $l_{j,a}$.
Let $Q_s$ denote a cube of side length $S \geq 1$.
Then for any $\epsilon>0$ we have
\[
\int_{Q_s} \prod_{j=1}^{k} \big(\sum_{a=1}^{N_j} T_{j,a}\big)^{1/(k-1)} \leq C_\epsilon {\rm Poly}(\nu^{-1}) S^{\epsilon} \prod_{j=1}^{k} N_j^{1/(k-1)}\,.
\]
\end{theorem}
\begin{corollary}\label{cor:mixed-norm-mult-Kakeya}
If in the situation of Theorem~\ref{MK} we have $n \leq r/\gamma \leq n+1$ and $r/\gamma = n(p/\gamma)'$, then for any sequences $c_{j,a,Q}$ with $1$-boxes $Q$ we obtain
\[
\ell^{\gamma}_{Q} \prod_{j=0}^{n} \ell^{r}_{a} \one_{Q \subset T_{j,a}} c_{j,a,Q}
\lessapprox
\prod_{j=0}^{n} \ell^{r}_{a} \ell^{p}_{Q \subset T_{j,a}} c_{j,a,Q}
\]
\end{corollary}
\begin{proof}
Without loss of generality $\gamma=1$.
The case $r=n$, $p=\infty$ is Theorem~\ref{MK}.
The case $r=p=n+1$ is H\"older's inequality.
To obtain the general case we dualize with $\ell^{\infty}_{Q}\ell^{r'}_{a}$ sequences and use complex interpolation.
\end{proof}
The scaling condition can be reformulated as
\begin{equation}
\label{eq:mixed-norm-mult-Kakeya:scaling}
r/\gamma = n(p/\gamma)'
\iff
\frac{n}{r} + \frac{1}{p} = \frac{1}{\gamma}.
\end{equation}
\section{Multilinear refined Strichartz estimate}\label{sec:kRS}
\begin{theorem} [$n+1$-linear refined Strichartz in dimension $n+1$] \label{thm-kRS}
Let $p:=\frac{2(n+2)}{n}$.
Let $f_j: \R^n \rightarrow \C$, $j=0,\dotsc,n$, with $G(\supp \widehat{f_{j}})$ being $\nu$-transverse.
Then
\begin{equation} \label{kRS}
\Bigl( \sum_{\bM \subset \bB} \prod_{j=0}^{n} \norm{ \eit f_{j} }_{L^{p}(\bM)}^{\frac{1}{n+1} \cdot \beta} \Bigr)^{1/\beta}
\lessapprox \nu^{-C}
\prod_{j=0}^{n} \norm{f_{j}}_{2}^{1/(n+1)}
\end{equation}
with $\beta = p \frac{n+1}{n+3} = 2 \frac{(n+2)(n+1)}{(n+3)n}$.
\end{theorem}
\cite[Theorem 4.2]{MR3842310} can be again recovered since $\frac{1}{\beta} = \frac{1}{p} + \frac{n}{(n+1)(n+2)}$.
Here $\beta$ arises from
\[
\frac{n+1}{\beta} = \frac{1}{\gamma} = \frac{n}{2} + \frac{1}{p}.
\]
\begin{proof}[Proof of Theorem~\ref{thm-kRS}]
We begin by writing
\[
LHS\eqref{kRS}^{n+1}
=
\ell^{\gamma}_{\bM} \prod_{j=0}^{n} \norm{ \eit f_{j} }_{L^{p}(\bM)}
\sim
\ell^{\gamma}_{slab} \ell^{\gamma}_{\bM\subset slab} \prod_{j=0}^{n} \norm{ \eit f_{j} }_{L^{p}(\bM)}
\]
with $\gamma = \beta/(n+1) = \frac{p}{n+3} = \frac{2(n+2)}{n(n+3)}$.
Now we temporarily fix $slab$.
Denote by $\bBp_{j}$ the set of $\bBp$ whose direction is in $G(\supp \widehat{f_{j}})$.
By decoupling
\begin{multline*}
\ell^{\gamma}_{\bM\subset slab} \prod_{j=0}^{n} \norm{ \eit f_{j} }_{L^{p}(\bM)}
\lessapprox
\ell^{\gamma}_{\bM \subset slab} \prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j} : \bM \subset \bBp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}\\
\sim
\ell^{\gamma}_{\bM \subset slab} \prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}, \bMp \subset \bBp \cap slab : \bM \subset \bMp} \norm{ \eit f_{\bBp} }_{L^{p}(\bM)}
\end{multline*}
Since $n < 2/\gamma = \frac{n(n+3)}{n+2} < n+1$ and \eqref{eq:mixed-norm-mult-Kakeya:scaling} holds, by Corollary~\ref{cor:mixed-norm-mult-Kakeya} with tubes $\bMp$ and boxes $\bM$ this is
\[
\lessapprox
\prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}, \bMp \subset \bBp \cap slab} \ell^{p}_{\bM \subset \bMp} \norm{\eit f_{\bBp}}_{L^{p}(\bM)}
=
\prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}, \bMp \subset \bBp \cap slab} \norm{\eit f_{\bBp}}_{L^{p}(\bMp)}
\]
and
\[
LHS\eqref{kRS}^{n+1}
\lessapprox
\ell^{\gamma}_{slab}
\prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}} \ell^{2}_{\bMp \subset \bBp \cap slab} \norm{\eit f_{\bBp}}_{L^{p}(\bMp)}
\]
By Corollary~\ref{cor:mixed-norm-mult-Kakeya} with tubes $\bBp$ and boxes $slab$ this is
\[
\lessapprox
\prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}} \ell^{p}_{slab} \ell^{2}_{\bMp \subset \bBp \cap slab} \norm{\eit f_{\bBp}}_{L^{p}(\bMp)}
\]
By Theorem~\ref{thm-LRS} and rescaling this is
\[
\lessapprox
\prod_{j=0}^{n} \ell^{2}_{\bBp \in \bBp_{j}} \norm{f_{\bBp}}_{2}
\]
By orthogonality \eqref{eq:orthogonality}, this is
\[
\lessapprox
\prod_{j=0}^{n} \norm{f_{j}}_{2}.
\]
\end{proof}
\section{Fractal Strichartz}
\label{sec-pf}
Somewhat confusingly, we change $p$ to $q$ and use $p$ for a different exponent.
We use boxes and tubes of the following dimensions.
\begin{center}
\begin{tabular}{cccc} \toprule
Name & Symbol & Size before scaling & Size after scaling\\ \midrule
Big & $\bB$ & $R$ & \\
Medium & $\bM$ & $R^{1/2}$ & \\
Small & $\bS$ & $K^{2}$ & \\
Big at previous scale & $\bBp$ & $R/K \times R$ & $R/K^{2} = R_{1}$\\
Medium at previous scale & $\bMp$ & $R^{1/2} \times R^{1/2}K$ & $R^{1/2}/K = R_{1}^{1/2}$\\
Small at previous scale & $\bSp$ & $KK_{1}^{2} \times K^{2}K_{1}^{2}$ & $K_{1}^{2}$\\ \midrule
Outer & $\bO$ & $R/r \times R$ & \\
Inner & $\bI$ & $K^{2} r^{1-4\delta} \times K^{2} r^{2-4\delta}$ & \\
Outer at previous scale& $\bOp$ & $R/(Kr) \times R$ & $R/(K^{2}r) \times R/K^{2}$\\
Inner at previous scale & $\bIp$ & $K K_{1}^{2} r^{1-4\delta} \times K^{2} K_{1}^{2} r^{2-4\delta}$ & $K_{1}^{2} r^{1-4\delta} \times K_{1}^{2} r^{2-4\delta}$\\
\bottomrule
\end{tabular}
\end{center}
The following possible inclusions will be relevant: $\bB \supset \bBp \supset \bMp \supset \bM \supset \bSp \supset \bS$ (for the latter inclusion it is important that $\delta \leq 1/4$).
\begin{proposition} \label{prop:fractal-strichartz}
Let $n\geq 1$.
Let $p=\frac{2(n+1)}{n-1}$ ($p=\infty$ when $n=1$).
Define $s$ and $\kappa$ by $\frac{1}{2} - \frac{1}{s} = \frac{n}{(n+1)(n+2)} = n \kappa$.
Fix $\delta \in (0,1/4)$.
For $R\geq 1$ let $\FrStr(R)$ denote the smallest constant such that the following holds with $K=R^{\delta}$.
For every non-negative weight function $(w_{\bS})$ and every function $f$ with $\supp \widehat{f}\subset B^n(0,1)$ we have
\begin{equation}\label{eq-main}
\ell^{2}_{\bM \subset \bB} \ell^{s}_{\bS \subset \bM} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\leq
\FrStr(R) W \norm{f}_2.
\end{equation}
with
\[
W := \sup_{1 \leq r \leq R^{1/2}} r^{-2\kappa} \sup_{\bO} \Bigl( \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{1/(2\kappa)} \bigr)^{2} \Bigr)^{\kappa}.
\]
Then
\[
\FrStr(R) \lessapprox K^{C} + \FrStr(R/K^{2}).
\]
\end{proposition}
\begin{corollary} \label{cor:fractal-strichartz}
For every $\epsilon>0$ there exists (sufficiently small) $\delta \in (0,1/4)$ such that
\[
\FrStr(R) \lesssim R^{\epsilon}.
\]
\end{corollary}
\begin{remark}
Note that if
\begin{equation}\label{ga}
\gamma:=
\max_{x'\in \R^{n+1},r\geq K^2} r^{-\alpha} \sum_{\bS \subset B(x',r)} w_{\bS}^{1/(2\kappa)}
\end{equation}
then for a fixed $1 \leq r \leq R^{1/2}$ we have
\begin{multline*}
r^{-2} \sup_{\bO} \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{1/(2\kappa)} \bigr)^{2}
\leq
r^{-2} \sup_{\bO} \sum_{\bI \subset \bO} \bigl( \sum_{\substack{B \subset \bI\\ \text{ball of radius } K^{2}r^{1-4\delta}}} \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)^{2}\\
\lesssim
r^{-1} \sup_{\bO} \sum_{\bI \subset \bO} \sum_{\substack{B \subset \bI\\ \text{ball of radius } K^{2}r^{1-4\delta}}} \bigl( \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)^{2}\\
\lesssim
r^{-1} \sup_{\bO} \sum_{\substack{B \subset \bO\\ \text{ball of radius } K^{2}r^{1-4\delta}}} \bigl( \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)^{2}\\
\lesssim
\sup_{B_{0} \text{ ball of radius } R/r} \sum_{\substack{B \subset B_{0}\\ \text{ball of radius } K^{2}r^{1-4\delta}}} \bigl( \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)^{2}\\
\lesssim
\sup_{B_{0}} \sum_{B \subset B_{0}} \bigl( \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)
\cdot \sup_{B \subset B_{0}} \bigl( \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)\\
\leq
\bigl( \sup_{B_{0}} \sum_{\bS \subset B_{0}} w_{\bS}^{1/(2\kappa)} \bigr)
\cdot \bigl( \sup_{B} \sum_{\bS \subset B} w_{\bS}^{1/(2\kappa)} \bigr)\\
\lessapprox
\gamma (R/r)^{\alpha} \gamma r^{\alpha}
=
\gamma^{2} R^{\alpha},
\end{multline*}
and taking supremum on the left-hand side we obtain
\[
W \lesssim (\gamma^{2} R^{\alpha})^{\frac{1}{(n+1)(n+2)}}.
\]
Hence Proposition~\ref{prop:fractal-strichartz} implies \cite[Proposition 3.1]{arxiv:1805.02775}.
\end{remark}
\begin{remark}
In the case $w_{\bS} = 1$ for all $\bS \subset \bB$ Proposition~\ref{prop:fractal-strichartz} is weaker than Theorem~\ref{thm-LRS}.
Indeed, in this case
\[
W \sim R^{1/(n+2)},
\]
\[
\ell^{2}_{\bM}
\leq R^{\frac{1}{2} (\frac{1}{2}-\frac{1}{\tilde{p}})} \ell^{\tilde{p}}_{Slab} \ell^{2}_{\bM \subset Slab},
\]
\[
\ell^{s}_{\bS \subset \bM} \leq
R^{\frac{n+1}{2} (\frac{1}{s}-\frac{1}{\tilde{p}})} \ell^{\tilde{p}}_{\bS \subset \bM},
\]
where $\tilde{p} = \frac{2(n+2)}{n}$, and
\[
\frac{1}{2} (\frac{1}{2}-\frac{1}{\tilde{p}})
=
\frac{n+1}{2} (\frac{1}{s}-\frac{1}{\tilde{p}})
=
\frac{1}{2(n+2)}.
\]
\end{remark}
\subsection{Preliminaries}
In the frequency space we decompose $B^n(0,1)$ into disjoint $K^{-1}$-cubes $\tau$.
Denote the set of $K^{-1}$-cubes $\tau$ by $\calS$.
For function $f$ with $\supp \widehat{f}\subset B^n(0,1)$ we have $f=\sum_\tau f_\tau$, where $\widehat{f_\tau}$ is $\widehat{f}$ restricted to $\tau$.
Given a $K^2$-cube $\bS$, we define its \textbf{significant} set
\[
\calS(\bS):=\Set[\Big]{\tau \in \calS \given \norm{\eit f_\tau}_{L^p(\bS)} \geq \frac{1}{100(\#\calS)}\norm{\eit f}_{L^p(\bS)} }\,.
\]
Note that
\[
\norm[\big]{\sum_{\tau\in \calS(B)}\eit f_\tau}_{L^p(\bS)} \sim \norm{\eit f}_{L^p(\bS)}\,.
\]
We say a $K^2$-cube $\bS$ is \textbf{narrow} if there is an $n$-dimensional subspace $V$ such that for all $\tau \in \calS(\bS)$
\[
{\rm Angle}(G(\tau),V) \leq \frac{1}{100nK}\,,
\]
where $G(\tau)\subset \bbS^n$ is a spherical cap of radius $\sim K^{-1}$ and ${\rm Angle}(G(\tau),V)$ denotes the smallest angle between any non-zero vector $v\in V$ and $v'\in G(\tau)$.
Otherwise we say the $K^2$-cube $\bS$ is \textbf{broad}.
It follows from this definition that for any broad $\bS$, there exist $\tau_1,\cdots \tau_{n+1} \in \calS(\bS)$ such that for any $v_j \in G(\tau_j)$
\begin{equation} \label{eq-trans}
\abs{v_1 \wedge v_2\wedge \cdots \wedge v_{n+1}} \gtrsim K^{-n}\,.
\end{equation}
\subsection{Broad case} \label{sec-br}
Let $\beta = 2 \frac{(n+2)(n+1)}{(n+3)n}$, $q = \frac{2(n+2)}{n}$, $s$.
We record a few relations between exponents $2 < \beta < s < q < p$:
\begin{multline*}
\frac{1}{s} - \frac{1}{q} = \frac{1}{q} - \frac{1}{p} = \frac{1}{2} - \frac{1}{\beta} = \frac{1}{(n+1)(n+2)},
\quad
\frac{1}{\beta} - \frac{1}{p} = \frac{1}{2} - \frac{1}{q} = \frac{1}{n+2},\\
\frac{1}{\beta} - \frac{1}{q} = \frac{1}{2} - \frac{1}{s} = \frac{n}{(n+1)(n+2)},
\quad
\frac{1}{2} - \frac{1}{p} = \frac{1}{n+1}.
\end{multline*}
We begin by estimating the contribution of broad cubes.
By H\"older's inequality we estimate
\begin{multline*}
\ell^{2}_{\bM} \ell^{s}_{\bS \subset \bM} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\leq
\ell^{2}_{\bM} (\ell^{1/\kappa}_{\bS \subset \bM} w_{\bS}) \ell^{q}_{\bS \subset \bM} \norm{\eit f}_{L^p(\bS)}\\
\leq
(\ell^{1/\kappa}_{\bM} \ell^{1/\kappa}_{\bS \subset \bM} w_{\bS})
\ell^{\beta}_{\bM} \ell^{q}_{\bS \subset \bM} \norm{\eit f}_{L^p(\bS)}\\
\lessapprox
W
\ell^{\beta}_{\bM} \ell^{q}_{\bS \subset \bM} \norm{\eit f}_{L^p(\bS)},
\end{multline*}
where we used definition of $W$ with $r=1$.
Denote the collection of $(n+1)$-tuple of transverse caps by $\Gamma$:
\[
\Gamma:=\Set[\Big]{ \tilde\tau=(\tau_1,\cdots,\tau_{n+1}) \given \tau_j\in \calS\text{ and } \eqref{eq-trans} \text{ holds for any } v_j\in G(\tau_j) }\,.
\]
Then $\abs{\Gamma} \lesssim K^{O(1)}$.
For some $f_{j} = f_{\tau_{j}}$ with $(\tau_1,\cdots,\tau_{n+1})\in \Gamma$ we have
\[
\norm{ \eit f }_{L^{p}(\bS)}
\lesssim
K^{O(1)} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{p}(\bS)}^{1/(n+1)}
\lesssim
K^{O(1)} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{q}(\bS)}^{1/(n+1)},
\]
where we used Bernstein's inequality.
By multilinear refined Strichartz we have
\begin{multline*}
\ell^{\beta}_{\bM} \ell^{q}_{\bS \subset \bM} \norm{ \eit f }_{L^{p}(\bS)}
\lesssim
K^{O(1)}
\ell^{\beta}_{\bM} \ell^{q}_{\bS \subset \bM} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{q}(\bS)}^{1/(n+1)}\\
\lesssim
K^{O(1)}
\ell^{\beta}_{\bM} \prod_{j=1}^{n+1} \bigl( \ell^{q}_{\bS \subset \bM} \norm{ \eit f_{j} }_{L^{q}(\bS)} \bigr)^{1/(n+1)}\\
\leq
K^{O(1)}
\ell^{\beta}_{\bM} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{q}(\bM)}^{1/(n+1)}\\
\lessapprox
\norm{f}_{2}.
\end{multline*}
So the broad case is done.
\subsection{Narrow case} \label{sec-nr}
For each narrow ball, we have the following lemma which is a consequence of $\ell^2$ decoupling theorem in dimension $n$ and Minkowski's inequality.
This argument is essentially contained in Bourgain-Demeter's proof of the $\ell^2$ decoupling conjecture and we omit the details (see the proof of \cite[Proposition 5.5]{MR3374964}).
\begin{lemma}\label{lem-nr-dec}
Suppose that $\bS$ is a narrow $K^2$-cube in $\R^{n+1}$.
Then for any $\epsilon>0$,
\[
\norm{\eit f}_{L^p(\bS)} \leq C_\epsilon K^{\epsilon} \left(\sum_{\tau\in \calS}\norm{\eit f_\tau}_{L^p(\omega_\bS)}^2\right)^{1/2} \,,
\]
here $p=\frac{2(n+1)}{n-1}$, $\calS$ denotes the set of $K^{-1}$-cubes which tile $B^n(0,1)$, and $\omega_\bS$ is a weight function which is essentially a characteristic function on $\bS$.
\end{lemma}
For each $\tau \in \calS$, we will deal with $\eit f_\tau$ by parabolic rescaling and induction on radius.
In order to do so, we need to further decompose $f$ in physical space and perform dyadic pigeonholing several times to get the right picture for our inductive hypothesis at scale $R_1:=R/K^2$ after rescaling.
We do the wave packet decomposition $f = \sum_{\bBp} f_{\bBp}$ with parameter $K$.
For a fixed $\tau$, the different boxes $\bBp_{\tau, B}$ tile $\bB$.
In particular, for each $\tau$, a given $K^2$-cube $\bS$ lies in exactly one box $\bBp_{\tau, D}$.
We write $f=\sum_{\bBp} f_{\bBp}$ for abbreviation.
By Lemma~\ref{lem-nr-dec} and ignoring tails, the narrow contribution is
\begin{multline} \label{eq-dec}
\ell^{2}_{\bM} \ell^{s}_{\bS \subset \bM} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lessapprox
\ell^{2}_{\bM} \ell^{s}_{\bS \subset \bM} \ell^{2}_{\bBp \supset \bM} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}\\
\lessapprox
\ell^{2}_{\bBp} \ell^{2}_{\bM \subset \bBp} \ell^{s}_{\bS \subset \bM} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}.
\end{multline}
Fixing $\bBp$ we obtain
\begin{multline}
\label{eq:fixed-Box-norm}
\ell^{2}_{\bM \subset \bBp} \ell^{s}_{\bS \subset \bM} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}
\lesssim
\ell^{2}_{\bMp \subset \bBp} K^{1/2-1/s} \ell^{s}_{\bM \subset \bMp} \ell^{s}_{\bSp \subset \bM} w_{\bSp} \ell^{p}_{\bS \subset \bSp} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}\\
\lesssim
K^{1/2 - 1/s} \ell^{2}_{\bMp \subset \bBp} \ell^{s}_{\bSp \subset \bMp} w_{\bSp} \norm{ \eit f_{\bBp} }_{L^{p}(\bSp)},
\end{multline}
where
\[
w_{\bSp} := \ell^{1/(2\kappa)}_{\bS \subset \bSp} w_{\bS}
\]
Now we use parabolic rescaling to turn the box $\bBp$ into an $R_{1}$-cube.
For each $1/K$-cube $\tau=\tau_{\bBp}$ in $B^n(0,1)$, we write $\xi=\xi_0+K^{-1} \zeta \in \tau$, where $\xi_0$ is the center of $\tau$, then
\[
\abs{\eit f_{\bBp} (x)} =K^{-n/2} \abs{e^{i\tilde t \Delta} g (\tilde x)}
\]
for some function $g$ with Fourier support in the unit cube and $\norm{g}_2=\norm{f_{\bBp}}_2$, where the new coordinates $(\tilde x,\tilde t)$ are related to the old coordinates $(x,t)$ by
\begin{equation} \label{coord}
\begin{cases}
\tilde x =K^{-1} x + 2 t K^{-1} \xi_0\,, \\
\tilde t = K^{-2} t \,.
\end{cases}
\end{equation}
For simplicity, denote the above relation by $(\tilde x,\tilde t)=F(x,t)$.
Therefore
\begin{equation} \label{Ybox-Ytilde}
\norm{\eit f_{\bBp} (x)}_{L^p(\bSp)}
=
K^{\frac{n+2}{p}-\frac{n}{2}} \norm{e^{i\tilde t \Delta} g(\tilde x)}_{L^p(\tilde \bSp)}
=
K^{-\frac{1}{n+1}} \norm{e^{i\tilde t \Delta} g(\tilde x)}_{L^p(\tilde \bSp)},
\end{equation}
where $\tilde \bSp$ is the image of $\bSp$ under the new coordinates.
Note that we can apply our inductive hypothesis \eqref{eq-main} at scale $R_1=R/K^2$ to $\norm{e^{i\tilde t \Delta} g(\tilde x)}_{L^p(\tilde Y)}$ with new weights $w_{\bSp}$.
This gives
\[
\eqref{eq:fixed-Box-norm}
\lessapprox
\underbrace{K^{1/2-1/s} K^{-\frac{1}{n+1}} W_{1}}_{(*)}
\norm{f_{\bBp}}_{2}.
\]
Since $\ell^{2}_{\bBp} \norm{f_{\bBp}}_{2} \lessapprox \norm{f}_{2}$, it remains to observe
\begin{equation}
\label{eq:big-const}
(*)
=
K^{-2\kappa} W_{1}
\lesssim
W.
\end{equation}
Indeed, every $r$ in the definition of $W_{1}$ corresponds to $Kr$ in the definition of $W$.
This finishes the estimate in the narrow case and completes the proof of Proposition~\ref{prop:fractal-strichartz}.
\begin{remark}
Essentially the same argument shows that
\begin{equation}\label{eq:fractal-strichartz:alpha=1}
\ell^{\beta}_{\bM} \ell^{q}_{\bS \subset \bM} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lessapprox
\sup_{K^{2} \leq r \leq R^{1/2}} \sup_{\bI} \bigl( r^{-2} \sum_{\bS \subset \bI} w_{\bS}^{1/\kappa} \bigr)^{\kappa}
\norm{f}_{2},
\end{equation}
which also implies \cite[Proposition 3.1]{arxiv:1805.02775} when $\alpha=1$ (and is in fact a stronger estimate).
It would be interesting to combine this with Proposition~\ref{prop:fractal-strichartz}.
\end{remark}
\section{Maximal Strichartz}
\label{sec:implications-of-fractal-strichartz}
First we forget the medium scale in Corollary~\ref{cor:fractal-strichartz}.
By H\"older's inequality we have
\[
\ell^{2}_{\bS \subset \bM} w_{\bS} \norm{\eit f}_{L^{p}(\bS)}
\leq
\bigl( \sum_{\bS \subset \bM} w_{\bS}^{1/(1/2-1/s)} \bigr)^{\frac{1}{2}-\frac{1}{s}} \cdot
\ell^{s}_{\bS \subset \bM} w_{\bS} \norm{\eit f}_{L^{p}(\bS)}
\]
With
\[
\lambda := \sup_{\bM} \sum_{\bS \subset \bM} w_{\bS}^{1/(1/2-1/s)}
\]
we obtain
\[
\ell^{2}_{\bS \subset \bB} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
=
\ell^{2}_{\bM \subset \bB} \ell^{2}_{\bS \subset \bM} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lessapprox
\lambda^{n \kappa} W \norm{f}_2.
\]
This recovers \cite[Theorem 1.5]{arxiv:1805.02775}.
If $w$ is a characteristic function, then $\lambda \leq W^{1/(2\kappa)}$, so this implies
\[
\ell^{2}_{\bS \subset \bB} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lessapprox
W^{n/2+1} \norm{f}_2.
\]
This recovers \cite[Corollary 1.6]{arxiv:1805.02775}.
In particular we also recover \cite[Theorem 2.2]{arxiv:1805.02775} which in turn improves \cite[Theorem 1.7]{MR3842310}: if $\mu$ is an $\alpha$-dimensional measure and $f$ has Fourier support in the unit ball, then
\[
\norm{\sup_{0 < t < R} \abs{\eit f}}_{L^{2}(B(0,R),\dif\mu)}
\lessapprox
R^{\frac{\alpha}{2(n+1)}} \norm{f}_{2}.
\]
The most optimistic conjecture for $\alpha=n$ would be
\[
\norm{\sup_{0 < t < R} \abs{\eit f}}_{L^{2(n+1)/n}(B(0,R))}
\lessapprox
\norm{f}_{2},
\]
which would imply the sharp $L^{2}$ estimate by H\"older's inequality.
This is known for $n=1$ \cite{MR1101221} and $n=2$ \cite{MR3702674}.
However, this conjecture is false for $n \geq 3$ by \cite{arxiv:1902.01430}.
On the other hand, if $\mu$ is an $\alpha$-dimensional measure with $\frac{3n+1}{4} \leq \alpha \leq n$, then \cite{MR3574661} \cite{arxiv:1703.01360} show that pointwise convergence of solutions fails for $s < \frac{n + (n-1)(n-\alpha)}{2(n+1)}$.
I do not trust \cite{MR3574661} because the union in (2.7) of that paper is not disjoint, so the lower bound for $\abs{\Omega}$ does not seem to hold.
\cite{MR2264734}: reduction of $H^{s}$ estimates to local estimates.
\section{Using multilinear restriction}
\begin{theorem}[{Multilinear restriction \cite{MR2275834}}] \label{thm:mult-restr}
In the setting of Theorem~\ref{thm-kRS} we have
\begin{equation} \label{kRS2}
\ell^{2(n+1)/n}_{\bS \subset \bB} \prod_{j=0}^{n} \norm{ \eit f_{j} }_{L^{2(n+1)/n}(\bS)}^{1/(n+1)}
\lessapprox \nu^{-C}
\prod_{j=0}^{n} \norm{f_{j}}_{2}^{1/(n+1)}.
\end{equation}
\end{theorem}
\begin{proposition} \label{prop:fractal-strichartz2}
Let $2 \leq t \leq 2(n+1)/n$, $p_{\mathrm{mr},n}=2(n+1)/n$, $p_{\mathrm{dec},n-1}=2(n+1)/(n-1)$,
\[
\frac{1}{t_{1}} = \frac{1}{t} - \frac{1}{p_{\mathrm{mr},n}}, \quad
\frac{1}{t_{2}} = \frac{1}{t} - \frac{1}{p_{\mathrm{dec},n-1}}, \quad
\frac{1}{t_{3}} = \frac{n+2}{p_{\mathrm{dec},n-1}} - \frac{n}{2}.
\]
In the setting of Proposition~\ref{prop:fractal-strichartz} let now $\FrStr(R)$ denote the smallest constant such that the following holds with $K=R^{\delta}$.
For every non-negative weight function $(w_{\bS})$ and every function $f$ with $\supp \widehat{f}\subset B^n(0,1)$ we have
\begin{equation}\label{eq-main2}
\ell^{t}_{\bS \subset \bB} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\leq
\FrStr(R) W \norm{f}_2.
\end{equation}
with
\[
W := \sup_{1 \leq r \leq R^{1/2}} r^{1/t_{3}} \sup_{\bO} \ell^{t_{1}}_{\bI \subset \bO} \ell^{t_{2}}_{\bS \subset \bI} w_{\bS}.
\]
Then
\[
\FrStr(R) \lessapprox K^{C} + \FrStr(R/K^{2}).
\]
\end{proposition}
\begin{proof}
In the broad case
\[
\norm{ \eit f }_{L^{p}(\bS)}
\lesssim
K^{O(1)} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{p}(\bS)}^{1/(n+1)}
\lesssim
K^{O(1)} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{2(n+1)/n}(\bS)}^{1/(n+1)},
\]
so
\begin{multline*}
\ell^{t}_{\bS \subset \bB} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lesssim
K^{O(1)} \ell^{t}_{\bS \subset \bB} w_{\bS} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{2(n+1)/n}(\bS)}^{1/(n+1)}\\
\leq
K^{O(1)} \ell^{t_{1}}_{\bS \subset \bB} w_{\bS} \cdot \ell^{2(n+1)/n} \prod_{j=1}^{n+1} \norm{ \eit f_{j} }_{L^{2(n+1)/n}(\bS)}^{1/(n+1)}\\
\lessapprox
\ell^{t_{1}}_{\bS \subset \bB} w_{\bS} \cdot \prod_{j=0}^{n} \norm{f_{j}}_{2}^{1/(n+1)}\\
\leq
\ell^{t_{1}}_{\bS \subset \bB} w_{\bS} \cdot \norm{f}_{2}.
\end{multline*}
In the narrow case by decoupling
\begin{multline}
\ell^{t}_{\bS \subset \bB} w_{\bS} \norm{ \eit f }_{L^{p}(\bS)}
\lessapprox
\ell^{t}_{\bS \subset \bB} \ell^{2}_{\bBp \supset \bS} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}\\
\lessapprox
\ell^{2}_{\bBp} \ell^{t}_{\bS \subset \bBp} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}.
\end{multline}
Fixing $\bBp$ we obtain
\begin{multline} \label{eq:fixed-Box-norm2}
\ell^{t}_{\bS \subset \bBp} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}
\lesssim
\ell^{t}_{\bSp \subset \bBp} \ell^{t}_{\bS \subset \bSp} w_{\bS} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}\\
\leq
\ell^{t}_{\bSp \subset \bBp} \ell^{t_{2}}_{\bS \subset \bSp} w_{\bS} \cdot \ell^{p}_{\bS \subset \bSp} \norm{ \eit f_{\bBp} }_{L^{p}(\bS)}\\
\lesssim
\ell^{t}_{\bSp \subset \bBp} w_{\bSp} \cdot \norm{ \eit f_{\bBp} }_{L^{p}(\bSp)},
\end{multline}
where
\[
w_{\bSp} := \ell^{t_{2}}_{\bS \subset \bSp} w_{\bS}.
\]
Parabolic rescaling gives
\[
\eqref{eq:fixed-Box-norm2}
\lessapprox
\underbrace{K^{-1/(n+1)} W_{1}}_{(*)}
\norm{f_{\bBp}}_{2},
\]
where $W_{1}$ is computed using the new weights $w_{\bSp}$.
Since $\ell^{2}_{\bBp} \norm{f_{\bBp}}_{2} \lessapprox \norm{f}_{2}$, it remains to observe
\begin{equation}
\label{eq:big-const2}
(*)
=
K^{-1/(n+1)} W_{1}
\lesssim
W.
\end{equation}
Indeed, every $r$ in the definition of $W_{1}$ corresponds to $Kr$ in the definition of $W$.
This finishes the estimate in the narrow case and completes the proof of Proposition~\ref{prop:fractal-strichartz2}.
\end{proof}
Note that $t_{2} < t_{1}$, and it follows that
\begin{multline*}
W
=
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{t_{2}} \bigr)^{t_{1}/t_{2}} \Bigr)^{1/t_{1}}\\
\leq
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{t_{2}} \bigr) \cdot \sup_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{t_{2}} \bigr)^{t_{1}/t_{2}-1} \Bigr)^{1/t_{1}}\\
\leq
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bS \subset \bO} w_{\bS}^{t_{2}} \Bigr)^{1/t_{1}} \cdot \sup_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} w_{\bS}^{t_{2}} \bigr)^{1/t_{2}-1/t_{1}}
\end{multline*}
If $w$ is the characteristic function of an $\alpha$-dimensional collection, then this is
\begin{multline*}
\lessapprox
\sup_{1 \leq r \leq R^{1/2}} r^{1/t_{3}} \Bigl( r (R/r)^{\alpha} \Bigr)^{1/t_{1}} \cdot \bigl( r r^{\alpha} \bigr)^{1/t_{2}-1/t_{1}}\\
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{1/t_{2}+1/t_{3}} r^{\alpha(1/t_{2}-2/t_{1})}
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{1/t-1/2} r^{\alpha(1/2-1/t)}\\
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{(\alpha-1)(1/2-1/t)}
=
R^{\alpha/t_{1}} R^{(\alpha-1)(1/2-1/t)/2},
\end{multline*}
assuming $\alpha \geq 1$.
For the $\ell^{2}_{\bS \subset \bB}$ norm this gives the estimate
\[
W \ell^{t_{3}}_{\bS \subset \bB} w_{\bS},
\]
where $1/t_{3} = 1/2 - 1/t$.
This is
\begin{multline*}
\leq
R^{\alpha/t_{1}} R^{(\alpha-1)(1/2-1/t)/2} R^{\alpha/t_{3}}
=
R^{\alpha/(2(n+1))} R^{(\alpha-1)(1/2-1/t)/2}.
\end{multline*}
In particular, for $n=\alpha=1$ we recover the $L^{4}$ Schr\"odinger maximal estimate with $t=4$.
\end{document}