-
Notifications
You must be signed in to change notification settings - Fork 1
/
92-kakeya-2d.tex
321 lines (310 loc) · 11.3 KB
/
92-kakeya-2d.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
\section{Maximal operators along separated directions in $\R^{2}$}
Kakeya maximal operators on $\R^{2}$ were was first estimated in \cite{MR0447949} (for a nice proof of a stronger result see \cite{MR2550196}).
Kakeya maximal operators are controlled by maximal operators along separated directions, and these were first estimated in \cite{MR0438022}.
In this section we prove the sharp estimate for such operators obtained in \cite{MR0481883}.
\begin{lemma}
\label{lem:Stromberg-covering}
Let $N\geq 2$ be an integer, $\Omega$ a $1/N$-separated set of directions in $\R^{2}$ and let $\calR$ a set of rectangles in $\R^{2}$ for which one of the sides points in a direction in $\Omega$.
Then there exists a subset $\calG \subset \calR$ such that
\begin{align}
\label{eq:int-sum^2}
\int_{\R^{2}} \left(\sum_{R \in \calG} \one_{R}(x)\right)^{2} \dif x
&\leq C \abs[\big]{ \bigcup_{R\in\calG} R }, \\
\label{eq:cover}
\abs[\big]{ \bigcup_{R \in \calR} R }
&\leq C (\log N) \abs[\big]{ \bigcup_{R \in \cal G} R }.
\end{align}
\end{lemma}
The separation hypothesis on $\Omega$ implies that $\abs{\Omega} \lesssim N$.
The separation hypothesis was replaced by this cardinality hypothesis in \cite{MR1681088} (an alternative proof appeared in \cite{MR1979927}).
We will only use separated $\Omega$'s.
\begin{proof}
Without loss of generality we may assume that $\calR$ is finite.
Partitioning $\calR$ into boundedly many pieces and using rotation invariance we may assume that the long sides of rectangles in $\calR$ point in the directions in $\Omega$ and that these directions are all within $1/10$ of some fixed direction.
We choose $\calG = \Set{ R_{1}, R_{2}, \dotsc }$ in the following way.
Suppose that $R_{1},\dotsc,R_{n-1}$ are already chosen.
Then let $R_{n}$ be a rectangle in $\calR$ with the longest long side subject to the condition
\begin{equation}
\label{eq:rect-choice}
\sum_{j=1}^{n-1} \abs{ R_{j} \cap R_{n} }
\leq
\frac{1}{2} \abs{ R_{n} }
\end{equation}
if such $R_{n}$ exists, or stop the construction otherwise.
By \eqref{eq:rect-choice} we have
\[
\abs[\big]{ R_{n} \setminus \cup_{j<n} R_{j} }
\geq
\abs{ R_{n} } - \sum_{j=1}^{n-1} \abs{ R_{j} \cap R_{n} }
\geq
\frac{1}{2} \abs{ R_{n} },
\]
and it follows that
\begin{multline}
\int_{\R^{2}} \left( \sum_{n} \one_{R_{n}} \right)^{2}
\leq
2 \sum_{j \leq n} \abs{ R_{j} \cap R_{n} }
\leq
3 \sum_{n} \abs{ R_{n} }\\
\leq
6 \sum_{n} \abs[\big]{ R_{n} \setminus \cup_{j<n} R_{j} }
=
6 \abs[\big]{ \cup_{n} R_{n} }.
\end{multline}
This shows \eqref{eq:int-sum^2}.
By the weak type $(1,1)$ inequality for the Hardy--Littlewood maximal operator $M$ the remaining inequality \eqref{eq:cover} will follow from
\begin{equation}
\cup_{R \in \calR \setminus \calG} R
\subset \Set{ M \bigl( \sum_{n} \one_{\tilde{R}_{n}} \bigr) > c / \log N},
\end{equation}
where $\tilde{R}_{n}$ is the rectangle with the same center, width, and orientation as $R_{n}$, and length multiplied by $4$.
If $R \in \calR\setminus\calG$, then \eqref{eq:rect-choice} fails for $R$ for all large $n$.
Let $n$ be the smallest index for which \eqref{eq:rect-choice} fails.
Then
\[
\sum_{j=1}^{n-1} \abs{ R_{j} \cap R }
\geq
\frac{1}{2} \abs{ R }
\]
and the long side of $R_{j}$ is longer than the long side of $R$ for all $j < n$, since otherwise $R_{j}$ could not have been selected.
Denote by $\theta_{j}$ the angle between long sides of $R$ and $R_{j}$ and by $w_{j}$ the width of $R_{j}$.
\begin{figure*}
\begin{center}
\includegraphics[height=5cm]{Stromberg-covering.png}
\end{center}
\end{figure*}
Let $L$ be the length of $R$, $W$ its width, and $0 \leq \alpha \leq 1/10$.
Let $s := 8 \max ( W, \alpha L )$.
Suppose that $\alpha \leq \theta_{j} \leq 2 \alpha$.
We claim that for every cube $Q$ with side length $s$ and center in $R$ we have
\[
\frac{ \abs{\tilde{R}_{j} \cap Q} }{ \abs{Q} }
\gtrsim
\frac{ \abs{R_{j} \cap R} }{ \abs{R} }.
\]
If $w_{j} \geq s$, then in fact both sides are $\sim 1$, so assume $w_{j} < s$.
Then
\[
\abs{\tilde{R}_{j} \cap Q} \gtrsim s w_{j},
\]
and also
\[
\abs{ R_{j} \cap R } \lesssim \min( Lw_{j}, Ww_{j}/\alpha ).
\]
Hence
\[
\frac{ \abs{R_{j} \cap R} }{ \abs{R} }
\lesssim
w_{j} \min( L, W/\alpha ) / (LW)\\
=
w_{j} / \max( W, \alpha L )
\sim
w_{j} / s
\lesssim
\frac{ \abs{\tilde{R}_{j} \cap Q} }{ \abs{Q} }
\]
as claimed.
By the pigeon principle there exists $\alpha \in \Set{ 0, 2^{0} \frac{2\pi}{N}, 2^{1}\frac{2\pi}{N}, \dotsc }$ such that for the set $J = \Set{ j<n \given \alpha \leq \theta_{j} \leq 2 \alpha }$ we have
\[
\sum_{j \in J} \abs{ R_{j} \cap R }
\gtrsim
(\log N)^{-1} \abs{ R }.
\]
Considering the cube $Q$ with side length $s$ centered at any $x \in R$ we obtain
\begin{align*}
M \bigl( \sum_{n} \one_{\tilde{R}_{n}} \bigr) (x)
&\geq
M \bigl( \sum_{j\in J} \one_{\tilde{R}_{j}} \bigr) (x)\\
&\geq
\abs{Q}^{-1} \sum_{j\in J} \abs{\tilde{R}_{j} \cap Q}\\
&\geq
\sum_{j\in J} \abs{R}^{-1} \abs{R_{j} \cap R}\\
&\gtrsim
(\log N)^{-1}.
\qedhere
\end{align*}
\end{proof}
\begin{theorem}[{\cite{MR0481883}}]
\label{thm:Stromberg-weak-2,2}
Let $N\geq 2$ be an integer and $\Omega$ a $1/N$-separated set of directions in $\R^{2}$.
Let $M_{\Omega}$ be the maximal operator associated to averaing over rectangles one of whose sides points in a direction in $\Omega$.
Then
\begin{equation}
\label{eq:Stromberg-weak-2,2}
\norm{ M_{\Omega} f }_{2,\infty} \lesssim (\log N)^{1/2} \norm{ f }_{2}.
\end{equation}
\end{theorem}
\begin{proof}
Let $\calR$ be the set of all rectangles $R$ with sides pointing in directions in $\Omega$ for which $\abs{R}^{-1} \int_{R} \abs{f} > \lambda$.
Let $\calG \subset \calR$ be as in Lemma~\ref{lem:Stromberg-covering}.
Then
\[
\lambda^{2} \abs[\big]{ \bigcup_{R \in \calG} R }^{2}
\leq
\lambda^{2} \Bigl( \sum_{R} \abs{R} \Bigr)^{2}
<
\Bigl( \sum_{R} \int_{R} \abs{f} \Bigr)^{2}
\leq
\norm{f}_{2}^{2} \norm{ \sum_{R\in\calG} \one_{R} }_{2}^{2}
\lesssim
\norm{f}_{2}^{2} \abs[\big]{ \bigcup_{R \in \calG} R },
\]
and it follows that
\[
\abs{ \Set{ M_{\Omega} f > \lambda } }
=
\abs[\big]{ \bigcup_{R \in \calR} R }
\lesssim
(\log N)
\abs[\big]{ \bigcup_{R \in \calG} R }
\lesssim
(\log N) \lambda^{-2} \norm{f}_{2}^{2}.
\qedhere
\]
\end{proof}
We will need the following interpolation argument.
It was already used in \cite{MR0481883}, but the proof was not written down, so several later papers prove versions of this result \cite{MR1261427,MR1681088,MR2680067}.
\begin{lemma}
\label{lem:3-point-weak-type-interpolation}
Let $N\geq 2$, $1\leq p < 2$, and $T$ be a quasisubadditive operator such that
\[
\norm{Tf}_{p,\infty} \leq N \norm{f}_{p},
\quad
\norm{Tf}_{\infty} \leq N \norm{f}_{\infty},
\quad
\norm{Tf}_{2,\infty} \leq \norm{f}_{2}.
\]
Then
\[
\norm{Tf}_{2} \lesssim (\log N)^{1/2} \norm{f}_{2}.
\]
\end{lemma}
\begin{proof}
The basic idea is to use the layer cake representation
\[
\norm{Tf}_{2}^{2} \sim \int_{0}^{\infty} \lambda \abs{ \Set{ Tf > \lambda } } \dif \lambda,
\]
for each $\lambda$ decompose
\[
f = f \one_{\abs{f} < N^{\alpha}\lambda} + f \one_{ N^{\alpha}\lambda \leq \abs{f} \leq N^{\beta}\lambda} + f \one_{N^{\beta}\lambda < \abs{f}},
\]
use the three different estimates for these pieces and optimize $\alpha,\beta$.
The rest is an exercise.
\end{proof}
The various versions of Lemma~\ref{lem:3-point-weak-type-interpolation} in \cite{MR1261427,MR1681088,MR2680067} have a common formulation in terms of real interpolation spaces.
We record it here using notation and results from \cite{MR0482275}.
This general version will not be used in this course.
\begin{lemma}
\label{lem:3-point-real-interpolation}
Let $\bar{A}, \bar{B}$ be compatible couples of Banach spaces, $0 < \theta < 1$, and $1\leq s \leq q \leq \infty$.
Let $N\geq 2$ and let $T$ be a (quasisub-)additive operator such that
\[
\norm{Ta}_{B_{0}} \leq N \norm{a}_{A_{0}},
\quad
\norm{Ta}_{B_{1}} \leq N \norm{a}_{A_{1}},
\quad
\norm{Ta}_{B_{\theta,\infty}} \leq \norm{a}_{A_{\theta,s}}.
\]
Then
\begin{equation}
\label{eq:3-point-real-interpolation}
\norm{Ta}_{B_{\theta,q}} \lesssim (\log N)^{1/s} \norm{a}_{A_{\theta,q}}.
\end{equation}
\end{lemma}
Interpolating between \eqref{eq:3-point-real-interpolation} with $q=\infty$ and the $A_{\theta,s} \to B_{\theta,\infty}$ estimate in the hypothesis using the reiteration theorem we further obtain
\begin{equation}
\label{eq:3-point-real-interpolation:r->infty}
\norm{Ta}_{B_{\theta,\infty}} \lesssim (\log N)^{1/s-1/r} \norm{a}_{A_{\theta,r}},
\quad
s \leq r \leq \infty.
\end{equation}
This allows to recover \cite[Proposition 5(i)]{MR1261427}.
\begin{proof}
By the fundamental lemma of interpolation theory there exists a decomposition
\[
a = \sum_{j\in\Z} a_{j}
\quad
\text{ with }
J(2^{j},a_{j}) \lesssim K(2^{j},a).
\]
By subadditivity of the $K$-functional we split
\[
K(2^{j}, Ta)
\lesssim
K(2^{j}, T (\sum_{k<-A} a_{j+k}) )
+
K(2^{j}, T (\sum_{\abs{k} \leq A} a_{j+k}) )
+
K(2^{j}, T (\sum_{k > A} a_{j+k}) ).
\]
Now we estimate the individual terms.
\begin{multline*}
K(2^{j}, T (\sum_{k<-A} a_{j+k}) )
\leq
\norm{ T (\sum_{k<-A} a_{j+k}) }_{B_{0}}
\leq
N \norm{ \sum_{k<-A} a_{j+k} }_{A_{0}}\\
\leq
N \sum_{k<-A} \norm{ a_{j+k} }_{A_{0}}
\leq
N \sum_{k<-A} J(2^{j+k}, a_{j+k} )
\leq
N \sum_{k<-A} K(2^{j+k}, a )
\end{multline*}
\begin{multline*}
K(2^{j}, T (\sum_{\abs{k} \leq A} a_{j+k}) )
\leq
2^{j\theta} \norm{ T (\sum_{\abs{k} \leq A} a_{j+k}) }_{B_{\theta,\infty}}
\leq
2^{j\theta} \norm{ \sum_{\abs{k} \leq A} a_{j+k} }_{A_{\theta,s}}\\
\lesssim
2^{j\theta} \Bigl( \sum_{\abs{k} \leq A} (2^{-(j+k)\theta} J(2^{j+k}, a_{j+k}) )^{s} \Bigr)^{1/s}
\lesssim
2^{j\theta} \Bigl( \sum_{\abs{k} \leq A} (2^{-(j+k)\theta} K(2^{j+k}, a) )^{s} \Bigr)^{1/s}.
\end{multline*}
\begin{multline*}
K(2^{j}, T (\sum_{k>A} a_{j+k}) )
\leq
2^{j} \norm{ T (\sum_{k>A} a_{j+k}) }_{B_{1}}
\leq
2^{j} N \norm{ \sum_{k>A} a_{j+k} }_{A_{1}}\\
\leq
2^{j} N \sum_{k>A} \norm{ a_{j+k} }_{A_{1}}
\leq
2^{j} N \sum_{k>A} 2^{-(j+k)} J(2^{j+k}, a_{j+k} )
\leq
N \sum_{k>A} 2^{-k} K(2^{j+k}, a ).
\end{multline*}
\begin{multline*}
\norm{Ta}_{B_{\theta,q}}
\sim
\Bigl( \sum_{j\in\Z} (2^{-j\theta} K(2^{j}, Ta) )^{q} \Bigr)^{1/q}\\
\lesssim
\Bigl( \sum_{j\in\Z} \Bigl( \sum_{k<-A} 2^{k\theta} N 2^{-(j+k)\theta} K(2^{j+k}, a)
+ \bigl( \sum_{\abs{k} \leq A} (2^{-(j+k)\theta} K(2^{j+k}, a) )^{s} \bigr)^{1/s}\\
+ \sum_{k>A} 2^{-k(1-\theta)} N 2^{-(j+k)\theta} K(2^{j+k}, a) \Bigr)^{q} \Bigr)^{1/q}\\
\leq
\sum_{k<-A} 2^{k\theta} N \Bigl( \sum_{j\in\Z} \Bigl( 2^{-(j+k)\theta} K(2^{j+k}, a) \Bigr)^{q} \Bigr)^{1/q}\\
+ \Bigl( \sum_{j\in\Z} \Bigl( \bigl( \sum_{\abs{k} \leq A} (2^{-(j+k)\theta} K(2^{j+k}, a) )^{s} \bigr)^{1/s} \Bigr)^{q} \Bigr)^{1/q}\\
+ \sum_{k>A} 2^{-k(1-\theta)} N \Bigl( \sum_{j\in\Z} \Bigl( 2^{-(j+k)\theta} K(2^{j+k}, a) \Bigr)^{q} \Bigr)^{1/q}\\
\lesssim
\sum_{k<-A} 2^{k\theta} N \norm{a}_{A_{\theta,q}}
+ (2A+1)^{1/s} \norm{a}_{A_{\theta,q}}
+ \sum_{k>A} 2^{-k(1-\theta)} N \norm{a}_{A_{\theta,q}}.
\end{multline*}
Choosing $A \sim \log N$ we obtain the claim.
\end{proof}
\begin{corollary}
\label{cor:Stromberg-strong-2,2}
In the setting of Theorem~\ref{thm:Stromberg-weak-2,2} we have
\[
\norm{ M_{\Omega} f }_{2} \lesssim (\log N) \norm{ f }_{2}.
\]
\end{corollary}
\begin{proof}
Apply Lemma~\ref{lem:3-point-real-interpolation} to the operator $(\log N)^{-1} M_{\Omega}$ with estimate $O(N)$ for the $L^{p}\to L^{p}$ norm, $1<p<2$, estimate $O(1)$ for the $L^{\infty} \to L^{\infty}$ norm, and estimate \eqref{eq:Stromberg-weak-2,2} for the $L^{2} \to L^{2,\infty}$ norm.
\end{proof}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: decoupling-notes
%%% End: