-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path96-BL-continuous.tex
154 lines (141 loc) · 5.16 KB
/
96-BL-continuous.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
\documentclass[biblatex]{pzorin-note}
\input{macros.tex}
\begin{document}
\subsection{Continuity of BL constants}
Need extremizers, simple proof \cite{MR2661170} not enough.
In this section we present the argument from \cite{MR3723636} that shows that the gaussian BL constant \eqref{BLfunctional} is continuous in the tuple of linear maps.
An earlier and weaker result that would also suffice for our purposes was proved in \cite{MR3783217}.
For \emph{simple} BL data a more precise result is available, namely that the BL constant is differentiable \cite{MR2836590}.
A more precise result for not necessarily simple BL data was proved in \cite{arxiv:1811.11052}, namely that the BL constant is locally H\"older.
We parameterize positive definite matrices by a rotation matrix and a diagonal matrix of their (positive) eigenvalues.
To shorten double sums of the form $\sum_{j=1}^m \sum_{i = 1}^{n_j}$ we define
\[
\calK := \Set{ (j,i) \given 1 \leq j \leq m, 1 \leq i \leq n_{j} }.
\]
For $(i,j) \in \calK$ let $p_{(j,i)} := p_{j}$.
We write $\calI$ for the set of all subsets $I$ of $\calK$ of cardinality $n$.
For each $I\in\calI$ define
\[
p_I := \prod_{k\in I} p_k,
\quad
\lambda_I := \prod_{k\in I} \lambda_k
\]
for any family $(\lambda_{k})_{k\in\calK} \subset (0,\infty)$.
\begin{lemma}
\label{thm:BL-lambda-R}
For suitable nonnegative nonnegative continuous functions $d_{I}$, $I\in\calI$, we have
\begin{equation}
\label{eq:BL-lambda-R}
\BL_{\bfg}(\bfB,\bfp)^{2} = \sup \Set*{
\frac{\prod_{k\in\calK} \lambda_k^{p_k} }{ \sum_{I\in \calI} \lambda_I p_I d_I(\bfB,\bfR) } \given \lambda_k \in (0,\infty), R_i \in \mathrm{SO}(n_i)
},
\end{equation}
where we denote by $\bfR$ the $m$-tuple $(R_i)_{i=1}^m$.
\end{lemma}
\begin{proof}
Recall from \eqref{gauss},
\[
\BL_{\bfg}(\bfB,\bfp)^{2}
=
\sup_{A_{1},\dotsc,A_{m}} \;\frac{\prod_{j=1}^m(\det A_j)^{p_j}}{\det\left(\sum_{j=1}^m p_jL_{j}^*A_jL_{j}\right)}.
\]
Here $A_j$ is a positive definite $n_j \times n_j$ matrix.
We fix an orthonormal basis $\Set{ \vec{e}_{j,i} \given i = 1, \dots, n_j }$ for each $H_{j} = \R^{n_j}$ and parameterize $A_j = R_j^* D_j R_j$, where $R_j \in \mathrm{SO}(n_i)$ is a rotation matrix and $D_j = \sum_{i=1}^{n_j} \lambda_{j,i} \vec{e}_{j,i} ({\vec{e}_{j,i}})^*$ is a diagonal matrix with positive diagonal entries $\lambda_{j,1}, \dotsc, \lambda_{j,n_j}$.
Using the notation introduced above,
\[
\prod_{j=1}^m (\det A_j)^{p_j}
=
\prod_{k\in\calK} \lambda_k^{p_k}.
\]
On the other hand,
\begin{align*}
\sum_{j=1}^m p_jL_{j}^*A_jL_{j}
& =
\sum_{j=1}^m p_jL_{j}^*R_j^*\left( \sum_{i=1}^{n_j} \lambda_{j,i} \vec{e}_{j,i}(\vec{e}_{j,i})^* \right) R_jL_{j}
\\ & =
\sum_{(j,i) \in \calK} p_j \lambda_{j,i} L_{j}^* R_j^* \vec{e}_{j,i} \left(L_{j}^* R_j^* \vec{e}_{j,i} \right)^*
\\ & =
\sum_{k \in \calK} p_k \lambda_k v_k v_k^*
=: T
\end{align*}
with $v_{j,i} := L_{j}^* R_j^* \vec{e}_{j,i}$
We compute $\det(T)$ using the Cauchy--Binet formula.
Define the $n \times \abs{\calK}$ matrices
\[
A = (\lambda_k p_k v_k)_{k \in \calK},
\quad
B = (v_{k})_{k \in \calK}.
\]
For $I \in \calI$ define $n \times n$ matrices
\[
A_{I} = (\lambda_k p_k v_k)_{k \in I},
\quad
B_{I} = (v_{k})_{k \in I}.
\]
Then
\[
\det(T)=\det(AB^{*})
= \sum_{I\in \calI} \det (A_I B_I^{*})
= \sum_{I\in \calI} \det(B_{I}) \left( \prod_{k \in I} \lambda_k p_k \right) \det (B_I^{*})
= \sum_{I\in \calI} \lambda_I p_I d_I
\]
with
\[
d_I
=
d_{I}(\bfB,\bfR)
:=
\det (B_I)^{2}
=
\det((v_k)_{k\in I})^2.
\qedhere
\]
\end{proof}
\begin{lemma}
\label{lem:BL-Barthe-fct-cont}
The function $F : [0,\infty)^{\calI} \to [0,+\infty]$ given by
\begin{equation}
\label{eq:BL-Barthe-formula}
F(\bfd)
:=
\sup_{\lambda_k>0} \frac{ \prod_{k\in\calK} \lambda_k^{p_k} }{ \sum_{I \in \calI} d_I p_I \lambda_I }
\end{equation}
is continuous.
\end{lemma}
\begin{proof}
First, \eqref{eq:BL-Barthe-formula} is lower semicontinuous as a supremum of lower semicontinuous functions.
It remains to prove upper semicontinuity.
Fix a point $\widetilde{\bfd}\in\R^N$.
Suppose that $\bfd\in\R^N$ is such that
\[
\abs{d_{I}-\widetilde{d}_{I}} \leq \delta \abs{\widetilde{d}_{I}}
\text{ for those } I \text{ for which } \widetilde{d}_{I} \neq 0
\]
for some $\delta>0$.
Then
\begin{align*}
F(\bfd)
&=
\sup_{\lambda_k>0} \frac{ \prod_{k\in\calK} \lambda_k^{p_k} }{ \sum_{\mathcal{I}} d_I p_I\lambda_I}
\\ &\leq
\sup_{\lambda_k>0} \frac{ \prod_{k\in\calK} \lambda_k^{p_k} }{ \sum_{\mathcal{I}} \widetilde{d}_I(1-\delta) p_I\lambda_I},
\\ &=
F(\tilde{\bfd}) ( 1-\delta )^{-1}.
\end{align*}
This proves the required upper semicontinuity.
\end{proof}
\begin{theorem}
\label{thm:gauss-BL-continuous}
For each $\bfp$, the map $\bfB \mapsto \BL_{\bfg}(\bfB,\bfp)$ is a continuous function with values in $[0,+\infty]$.
\end{theorem}
\begin{proof}[Proof of Theorem~\ref{thm:gauss-BL-continuous}]
By Lemma~\ref{thm:BL-lambda-R} we have
\[
\BL_{\bfg}(\bfB,\bfp)^{2} = \sup \Set*{
F(\bfd(\bfB,\bfR)) \given R_i \in \mathrm{SO}(n_i) },
\]
where $F$ is defined by \eqref{eq:BL-Barthe-formula}.
By Lemma~\ref{lem:BL-Barthe-fct-cont} and construction of $\bfd$ the function $(\bfB,\bfR) \mapsto F(\bfd(\bfB,\bfR))$ is continuous, hence locally uniformly continuous.
Since the supremum is taken over a compact set, it is also continuous.
\end{proof}
\end{document}