-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
152 lines (125 loc) · 5.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import argparse
import logging
import sys
from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR
from torch.utils.tensorboard import SummaryWriter
import models
parser = argparse.ArgumentParser(
description='PyTorch CIFAR10 Training Program')
parser.add_argument('-m', '--model', default='resnet18',
type=str, help='the model achitecture')
parser.add_argument('--lr', default=0.01, type=float,
help='the initial learning rate')
parser.add_argument('--batch-size', '-b', default=32,
type=int, help="The training batch size.")
parser.add_argument('--epochs', default=200, type=int,
help="The total number of training epochs")
parser.add_argument('--momentum', default=0.9, type=float,
help='Momentum value for optim')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float,
help='Gamma update for SGD')
parser.add_argument('--scheduler', default="cosine", type=str,
help="Scheduler for SGD. It can one of multi-step and cosine")
parser.add_argument('--milestones', default="80,120,140,180", type=str,
help="milestones for MultiStepLR")
args = parser.parse_args()
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
writer = SummaryWriter()
def train_epoch(loader, loss, net, optimizer, device, epoch=-1):
net.train()
running_loss = 0.0
num = 0
for i, data in enumerate(loader):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
num += labels.size(0)
if (epoch == 0 or epoch == -1) and i == 0:
writer.add_graph(net, inputs)
avg_loss = running_loss / num
logging.info(f'[Epoch {epoch}] loss: {avg_loss:.3f}')
writer.add_scalar("Loss", avg_loss, global_step=epoch)
def eval(loader, net, device, epoch=-1):
net.eval()
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in loader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
grid = torchvision.utils.make_grid(inputs)
writer.add_image('images', grid, 0)
correct = sum(class_correct)
total = sum(class_total)
print(
f'Accuracy of the network on the 10000 test images: {correct / total:.3f}')
writer.add_scalar(f"Accuracy", correct / total, global_step=epoch)
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
writer.add_scalar(f"{classes[i]}_accuracy", class_correct[i] / class_total[i],
global_step=epoch)
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
num_classes = len(classes)
net = getattr(models, args.model)(num_classes=num_classes)
net.to(device)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
train_data = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=train_transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
shuffle=True, num_workers=4)
test_data = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size,
shuffle=False, num_workers=2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
if args.scheduler == 'multi-step':
logging.info("Uses MultiStepLR scheduler.")
milestones = [int(v.strip()) for v in args.milestones.split(",")]
scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
elif args.scheduler == 'cosine':
logging.info("Uses CosineAnnealingLR scheduler.")
scheduler = CosineAnnealingLR(optimizer, args.epochs)
else:
logging.fatal(f"Unsupported Scheduler: {args.scheduler}.")
parser.print_help(sys.stderr)
sys.exit(1)
for epoch in range(args.epochs):
train_epoch(train_loader, criterion, net, optimizer, device, epoch)
scheduler.step()
if epoch % 10 == 0 or epoch + 1 == args.epochs:
eval(test_loader, net, device, epoch)