forked from cydonia999/Learning_to_See_in_the_Dark_PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·56 lines (47 loc) · 1.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
import csv
import os
import sys
import torch
import shutil
import pickle
import numpy as np
from skimage.measure import compare_ssim, compare_psnr
def load_state_dict(model, fname):
"""
Set parameters converted from Caffe models authors of VGGFace2 provide.
See https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/.
Arguments:
model: model
fname: file name of parameters converted from a Caffe model, assuming the file format is Pickle.
"""
with open(fname, 'rb') as f:
weights = pickle.load(f, encoding='latin1')
own_state = model.state_dict()
for name, param in weights.items():
if name in own_state:
try:
own_state[name].copy_(torch.from_numpy(param))
except Exception:
raise RuntimeError('While copying the parameter named {}, whose dimensions in the model are {} and whose '\
'dimensions in the checkpoint are {}.'.format(name, own_state[name].size(), param.size()))
else:
raise KeyError('unexpected key "{}" in state_dict'.format(name))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_psnr(im1, im2):
return compare_psnr(im1, im2, data_range=255)
def get_ssim(im1, im2):
return compare_ssim(im1, im2, data_range=255, gaussian_weights=True, use_sample_covariance=False, multichannel=True)