From e2abfd3f12c22ac192a196326dca620ed99733e8 Mon Sep 17 00:00:00 2001 From: Edoardo-Pedicillo Date: Fri, 14 Feb 2025 11:22:38 +0400 Subject: [PATCH] refactor: remove unused variables --- src/qibocal/protocols/classification.py | 29 +------------------ .../resonator_amplitude.py | 1 - src/qibocal/protocols/utils.py | 2 +- 3 files changed, 2 insertions(+), 30 deletions(-) diff --git a/src/qibocal/protocols/classification.py b/src/qibocal/protocols/classification.py index dc306561e..7576dfc54 100644 --- a/src/qibocal/protocols/classification.py +++ b/src/qibocal/protocols/classification.py @@ -1,4 +1,4 @@ -from dataclasses import dataclass, field, fields +from dataclasses import dataclass, field import numpy as np import numpy.typing as npt @@ -68,19 +68,6 @@ class SingleShotClassificationResults(Results): effective_temperature: dict[QubitId, float] = field(default_factory=dict) """Qubit effective temperature from Boltzmann distribution.""" - def __contains__(self, key: QubitId): - """Checking if key is in Results. - - Overwritten because classifiers_hpars is empty when running - the default_classifier. - """ - return all( - key in getattr(self, field.name) - for field in fields(self) - if isinstance(getattr(self, field.name), dict) - and field.name != "classifiers_hpars" - ) - def _acquisition( params: SingleShotClassificationParameters, @@ -174,7 +161,6 @@ def train_classifier(data, qubit): qubit_data = data.data[qubit] i_values = qubit_data["i"] q_values = qubit_data["q"] - iq_values = np.stack((i_values, q_values), axis=-1) states = qubit_data["state"] model = QubitFit() model.fit(i_values, q_values, states) @@ -184,28 +170,15 @@ def train_classifier(data, qubit): def _fit(data: SingleShotClassificationData) -> SingleShotClassificationResults: qubits = data.qubits - benchmark_tables = {} - models_dict = {} - y_tests = {} - x_tests = {} - hpars = {} threshold = {} rotation_angle = {} mean_gnd_states = {} mean_exc_states = {} fidelity = {} assignment_fidelity = {} - y_test_predict = {} grid_preds_dict = {} effective_temperature = {} for qubit in qubits: - # qubit_data = data.data[qubit] - # i_values = qubit_data["i"] - # q_values = qubit_data["q"] - # iq_values = np.stack((i_values, q_values), axis=-1) - # states = qubit_data["state"] - # model = QubitFit() - # model.fit(i_values, q_values, states) model = train_classifier(data, qubit) grid = evaluate_grid(qubit_data) grid_preds = model.predict(grid) diff --git a/src/qibocal/protocols/readout_optimization/resonator_amplitude.py b/src/qibocal/protocols/readout_optimization/resonator_amplitude.py index 83e8e3da0..ec98c91cc 100644 --- a/src/qibocal/protocols/readout_optimization/resonator_amplitude.py +++ b/src/qibocal/protocols/readout_optimization/resonator_amplitude.py @@ -1,5 +1,4 @@ from dataclasses import dataclass, field -from os import error import numpy as np import numpy.typing as npt diff --git a/src/qibocal/protocols/utils.py b/src/qibocal/protocols/utils.py index 24501e4cf..9f3289a57 100644 --- a/src/qibocal/protocols/utils.py +++ b/src/qibocal/protocols/utils.py @@ -1044,7 +1044,6 @@ def plot_results(data: Data, qubit: QubitId, qubit_states: list, fit: Results): """ figures = [] qubit_data = data.data[qubit] - grid = evaluate_grid(qubit_data) fig = make_subplots( rows=1, @@ -1052,6 +1051,7 @@ def plot_results(data: Data, qubit: QubitId, qubit_states: list, fit: Results): ) if fit is not None: + grid = evaluate_grid(qubit_data) predictions = fit.grid_preds[qubit] fig.add_trace( go.Contour(