-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyMain.py
246 lines (198 loc) · 10.4 KB
/
MyMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import unicode_literals, print_function, division
from io import open
import torch
import torch.nn as nn
from torch import optim
import MyClass
import MyData, pickle
import datetime
from nltk.translate.bleu_score import sentence_bleu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_LENGTH = 50
SOS_token = 0
EOS_token = 1
teacher_forcing_ratio = 0.5
import os, time, random
import argparse
## hyperparameters
parser = argparse.ArgumentParser(description='MT for Chinese to English')
parser.add_argument('--train_data', type=str, default='data', help='train data source')
parser.add_argument('--test_data', type=str, default='data', help='test data source')
parser.add_argument('--epoch_num', type=int, default=10, help='#epoch of training')
parser.add_argument('--hidden_size', type=int, default=256, help='#dim of hidden state')
parser.add_argument('--embedding_size', type=int, default=256, help='random init char embedding_dim')
parser.add_argument('--mode', type=str, default='test', help='train/test')
args = parser.parse_args()
import logging
from logging import handlers
class Logger(object):
level_relations = {
'debug':logging.DEBUG,
'info':logging.INFO,
'warning':logging.WARNING,
'error':logging.ERROR,
'crit':logging.CRITICAL
}#日志级别关系映射
def __init__(self,filename,level='info',when='D',backCount=3,fmt='%(asctime)s - %(levelname)s: %(message)s'):
self.logger = logging.getLogger(filename)
format_str = logging.Formatter(fmt)#设置日志格式
self.logger.setLevel(self.level_relations.get(level))#设置日志级别
sh = logging.StreamHandler()#往屏幕上输出
sh.setFormatter(format_str) #设置屏幕上显示的格式
th = handlers.TimedRotatingFileHandler(filename=filename,when=when,backupCount=backCount,encoding='utf-8')#往文件里写入#指定间隔时间自动生成文件的处理器
#实例化TimedRotatingFileHandler
#interval是时间间隔,backupCount是备份文件的个数,如果超过这个个数,就会自动删除,when是间隔的时间单位,单位有以下几种:
# S 秒
# M 分
# H 小时、
# D 天、
# W 每星期(interval==0时代表星期一)
# midnight 每天凌晨
th.setFormatter(format_str)#设置文件里写入的格式
self.logger.addHandler(sh) #把对象加到logger里
self.logger.addHandler(th)
def tensorFromSentence(sent, vocab):
#添加eos标记,并转换为tensor类型
indexes = MyData.sentence2id(sent, vocab)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(pair[0], cn2id)
target_tensor = tensorFromSentence(pair[1], en2id)
return (input_tensor, target_tensor)
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
#encoder_outputs: [10,256]
encoder_outputs = torch.zeros(max_length, encoder.hidden_size*2, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) #decoder_input: [1,1]
decoder_hidden = encoder_hidden[1,:,:].view(1,1,-1) #编码层最后一个时刻的隐藏状态作为解码层的初始状态
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False #随机确定是否使用teaching force
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di] # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1) #topk(n) : 求前n大的数(无序)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
def trainIters(encoder, decoder, pairs, epoch_num, print_every=10, learning_rate=0.01):
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensorsFromPair(pair) for pair in pairs]
n_iters = len(training_pairs)
criterion = nn.NLLLoss() # 负似然损失
log = Logger('all.log', level='debug')
for epoch in range(1, epoch_num+1):
random.shuffle(training_pairs)
print_loss_total = 0 # Reset every print_every
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
# 每次训练随机地选择是否使用teacher_forcing
loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
# 每迭代若干次次输出一次平均损失
if iter % print_every == 0:
now_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
#get_logger('log.txt').info('Epoch {}, {}/{}, loss: {:.5}'.format(epoch, iter, n_iters, print_loss_avg))
string1 = 'Epoch: {}/{} iter: {}/{} loss: {:.4}' .format(epoch, epoch_num,
iter, n_iters, print_loss_avg)
log.logger.info(string1)
def evaluate(encoder, decoder, sentence, word2id, id2word, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(sentence, word2id)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size*2, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) # SOS
decoder_hidden = encoder_hidden[1,:,:].view(1,1,-1)
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(id2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
def evaluateTest(encoder, decoder, pairs, vocab, id2tag):
fw1 = open('result.txt','w', encoding='utf-8')
total_score = 0
for pair in pairs:
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0], vocab, id2tag)
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
total_score += sentence_bleu([pair[1]],output_words)
s='> {}\nT: {}\nP: {}\n'.format(pair[0],pair[1],output_sentence)
fw1.write(s)
result_s="BLEU: {:.2}".format(total_score*1.0/len(pairs))
print(result_s)
fw1.close()
train_data_path = os.path.join('.', args.train_data, 'cn_train.txt')
train_label_path = os.path.join('.', args.train_data, 'en_train.txt')
test_data_path = os.path.join('.', args.test_data, 'cn_test.txt')
test_label_path = os.path.join('.', args.test_data, 'en_test.txt')
if not os.path.exists('train_data.pkl'):
train_data = MyData.read_corpus(train_data_path, train_label_path, 'train')
test_data = MyData.read_corpus(test_data_path, test_label_path, 'test')
test_size = len(test_data)
else:
print('loading existing data...')
with open('train_data.pkl', 'rb') as fr:
train_data = pickle.load(fr)
with open('test_data.pkl', 'rb') as fr:
test_data = pickle.load(fr)
test_size = len(test_data)
vocab_path = os.path.join('.', args.train_data, 'word2id.pkl')
tag_path = os.path.join('.', args.train_data, 'tag2id.pkl')
id2tag_path = os.path.join('.', args.train_data, 'id2tag.pkl')
if not os.path.exists(vocab_path):
MyData.vocab_build(vocab_path, tag_path, id2tag_path, train_data, 5)
cn2id, en2id, id2en = MyData.read_dictionary(vocab_path, tag_path, id2tag_path)
if args.mode == 'train':
print('start training...')
encoder1 = MyClass.EncoderRNN(len(cn2id), args.embedding_size, args.hidden_size).to(device)
attn_decoder1 = MyClass.AttnDecoderRNN(args.hidden_size, len(en2id), dropout_p=0.1).to(device)
trainIters(encoder1, attn_decoder1, train_data, args.epoch_num, print_every=64) #75000:训练预料条数 5000:每5000次输出一次损失情况
torch.save(encoder1,'model/encoder.pkl')
torch.save(attn_decoder1,'model/decoder.pkl')
else:
encoder = torch.load('model/encoder.pkl')
decoder = torch.load('model/decoder.pkl')
evaluateTest(encoder, decoder, test_data, cn2id, id2en)