-
Notifications
You must be signed in to change notification settings - Fork 19
/
prepare_data.py
79 lines (63 loc) · 2.28 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocesses raw data and produces TFRecord files
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import texar as tx
from utils import data_utils, processor
# pylint: disable=invalid-name, too-many-locals, too-many-statements
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
"data_dir", 'data/toy',
"The directory of raw data, wherein data files must be named as "
"'train.txt', 'dev.txt', or 'test.txt'.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maxium length of sequence, longer sequence will be trimmed.")
flags.DEFINE_string(
"tfrecord_output_dir", None,
"The output directory where the TFRecord files will be generated. "
"By default it is set to be the same as `--data_dir`.")
flags.DEFINE_string(
"pretrained_model_dir", "gpt2_pretrained_models/model_117M",
"The directory of pretrained model.")
tf.logging.set_verbosity(tf.logging.INFO)
def prepare_data():
"""
Builds the model and runs.
"""
data_dir = FLAGS.data_dir
if FLAGS.tfrecord_output_dir is None:
tfrecord_output_dir = data_dir
else:
tfrecord_output_dir = FLAGS.tfrecord_output_dir
tx.utils.maybe_create_dir(tfrecord_output_dir)
# Creates a data pre-processor for, e.g., BPE encoding
proc = processor.get_encoder(FLAGS.pretrained_model_dir)
# Produces TFRecord files
data_utils.prepare_TFRecord_data(
data_dir=data_dir,
max_seq_length=FLAGS.max_seq_length,
encoder=proc,
output_dir=tfrecord_output_dir)
def main():
"""Data preparation.
"""
prepare_data()
if __name__ == "__main__":
main()