-
-
Notifications
You must be signed in to change notification settings - Fork 670
/
top_score_collector.rs
1376 lines (1290 loc) · 51.8 KB
/
top_score_collector.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::fmt;
use std::marker::PhantomData;
use std::sync::Arc;
use columnar::ColumnValues;
use serde::{Deserialize, Serialize};
use super::Collector;
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
use crate::collector::top_collector::{ComparableDoc, TopCollector, TopSegmentCollector};
use crate::collector::tweak_score_top_collector::TweakedScoreTopCollector;
use crate::collector::{
CustomScorer, CustomSegmentScorer, ScoreSegmentTweaker, ScoreTweaker, SegmentCollector,
};
use crate::fastfield::{FastFieldNotAvailableError, FastValue};
use crate::query::Weight;
use crate::{DocAddress, DocId, Order, Score, SegmentOrdinal, SegmentReader, TantivyError};
struct FastFieldConvertCollector<
TCollector: Collector<Fruit = Vec<(u64, DocAddress)>>,
TFastValue: FastValue,
> {
pub collector: TCollector,
pub field: String,
pub fast_value: std::marker::PhantomData<TFastValue>,
order: Order,
}
impl<TCollector, TFastValue> Collector for FastFieldConvertCollector<TCollector, TFastValue>
where
TCollector: Collector<Fruit = Vec<(u64, DocAddress)>>,
TFastValue: FastValue,
{
type Fruit = Vec<(TFastValue, DocAddress)>;
type Child = TCollector::Child;
fn for_segment(
&self,
segment_local_id: crate::SegmentOrdinal,
segment: &SegmentReader,
) -> crate::Result<Self::Child> {
let schema = segment.schema();
let field = schema.get_field(&self.field)?;
let field_entry = schema.get_field_entry(field);
if !field_entry.is_fast() {
return Err(TantivyError::SchemaError(format!(
"Field {:?} is not a fast field.",
field_entry.name()
)));
}
let schema_type = TFastValue::to_type();
let requested_type = field_entry.field_type().value_type();
if schema_type != requested_type {
return Err(TantivyError::SchemaError(format!(
"Field {:?} is of type {schema_type:?}!={requested_type:?}",
field_entry.name()
)));
}
self.collector.for_segment(segment_local_id, segment)
}
fn requires_scoring(&self) -> bool {
self.collector.requires_scoring()
}
fn merge_fruits(
&self,
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
) -> crate::Result<Self::Fruit> {
let raw_result = self.collector.merge_fruits(segment_fruits)?;
let transformed_result = raw_result
.into_iter()
.map(|(score, doc_address)| {
if self.order.is_desc() {
(TFastValue::from_u64(score), doc_address)
} else {
(TFastValue::from_u64(u64::MAX - score), doc_address)
}
})
.collect::<Vec<_>>();
Ok(transformed_result)
}
}
/// The `TopDocs` collector keeps track of the top `K` documents
/// sorted by their score.
///
/// The implementation is based on a repeatedly truncating on the median after K * 2 documents
/// with pattern defeating QuickSort.
/// The theoretical complexity for collecting the top `K` out of `N` documents
/// is `O(N + K)`.
///
/// This collector does not guarantee a stable sorting in case of a tie on the
/// document score, for stable sorting `PartialOrd` needs to resolve on other fields
/// like docid in case of score equality.
/// Only then, it is suitable for pagination.
///
/// ```rust
/// use tantivy::collector::TopDocs;
/// use tantivy::query::QueryParser;
/// use tantivy::schema::{Schema, TEXT};
/// use tantivy::{doc, DocAddress, Index};
///
/// # fn main() -> tantivy::Result<()> {
/// let mut schema_builder = Schema::builder();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
///
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// index_writer.add_document(doc!(title => "The Name of the Wind"))?;
/// index_writer.add_document(doc!(title => "The Diary of Muadib"))?;
/// index_writer.add_document(doc!(title => "A Dairy Cow"))?;
/// index_writer.add_document(doc!(title => "The Diary of a Young Girl"))?;
/// index_writer.commit()?;
///
/// let reader = index.reader()?;
/// let searcher = reader.searcher();
///
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// let top_docs = searcher.search(&query, &TopDocs::with_limit(2))?;
///
/// assert_eq!(top_docs[0].1, DocAddress::new(0, 1));
/// assert_eq!(top_docs[1].1, DocAddress::new(0, 3));
/// # Ok(())
/// # }
/// ```
pub struct TopDocs(TopCollector<Score>);
impl fmt::Debug for TopDocs {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"TopDocs(limit={}, offset={})",
self.0.limit, self.0.offset
)
}
}
struct ScorerByFastFieldReader {
sort_column: Arc<dyn ColumnValues<u64>>,
order: Order,
}
impl CustomSegmentScorer<u64> for ScorerByFastFieldReader {
fn score(&mut self, doc: DocId) -> u64 {
let value = self.sort_column.get_val(doc);
if self.order.is_desc() {
value
} else {
u64::MAX - value
}
}
}
struct ScorerByField {
field: String,
order: Order,
}
impl CustomScorer<u64> for ScorerByField {
type Child = ScorerByFastFieldReader;
fn segment_scorer(&self, segment_reader: &SegmentReader) -> crate::Result<Self::Child> {
// We interpret this field as u64, regardless of its type, that way,
// we avoid needless conversion. Regardless of the fast field type, the
// mapping is monotonic, so it is sufficient to compute our top-K docs.
//
// The conversion will then happen only on the top-K docs.
let sort_column_opt = segment_reader.fast_fields().u64_lenient(&self.field)?;
let (sort_column, _sort_column_type) =
sort_column_opt.ok_or_else(|| FastFieldNotAvailableError {
field_name: self.field.clone(),
})?;
let mut default_value = 0u64;
if self.order.is_asc() {
default_value = u64::MAX;
}
Ok(ScorerByFastFieldReader {
sort_column: sort_column.first_or_default_col(default_value),
order: self.order.clone(),
})
}
}
impl TopDocs {
/// Creates a top score collector, with a number of documents equal to "limit".
///
/// # Panics
/// The method panics if limit is 0
pub fn with_limit(limit: usize) -> TopDocs {
TopDocs(TopCollector::with_limit(limit))
}
/// Skip the first "offset" documents when collecting.
///
/// This is equivalent to `OFFSET` in MySQL or PostgreSQL and `start` in
/// Lucene's TopDocsCollector.
///
/// # Example
///
/// ```rust
/// use tantivy::collector::TopDocs;
/// use tantivy::query::QueryParser;
/// use tantivy::schema::{Schema, TEXT};
/// use tantivy::{doc, DocAddress, Index};
///
/// # fn main() -> tantivy::Result<()> {
/// let mut schema_builder = Schema::builder();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
///
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// index_writer.add_document(doc!(title => "The Name of the Wind"))?;
/// index_writer.add_document(doc!(title => "The Diary of Muadib"))?;
/// index_writer.add_document(doc!(title => "A Dairy Cow"))?;
/// index_writer.add_document(doc!(title => "The Diary of a Young Girl"))?;
/// index_writer.add_document(doc!(title => "The Diary of Lena Mukhina"))?;
/// index_writer.commit()?;
///
/// let reader = index.reader()?;
/// let searcher = reader.searcher();
///
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// let top_docs = searcher.search(&query, &TopDocs::with_limit(2).and_offset(1))?;
///
/// assert_eq!(top_docs.len(), 2);
/// assert_eq!(top_docs[0].1, DocAddress::new(0, 4));
/// assert_eq!(top_docs[1].1, DocAddress::new(0, 3));
/// Ok(())
/// # }
/// ```
#[must_use]
pub fn and_offset(self, offset: usize) -> TopDocs {
TopDocs(self.0.and_offset(offset))
}
/// Set top-K to rank documents by a given fast field.
///
/// If the field is not a fast or does not exist, this method returns successfully (it is not
/// aware of any schema). An error will be returned at the moment of search.
///
/// If the field is a FAST field but not a u64 field, search will return successfully but it
/// will return returns a monotonic u64-representation (ie. the order is still correct) of
/// the requested field type.
///
/// # Example
///
/// ```rust
/// # use tantivy::schema::{Schema, FAST, TEXT};
/// # use tantivy::{doc, Index, DocAddress, Order};
/// # use tantivy::query::{Query, QueryParser};
/// use tantivy::Searcher;
/// use tantivy::collector::TopDocs;
///
/// # fn main() -> tantivy::Result<()> {
/// # let mut schema_builder = Schema::builder();
/// # let title = schema_builder.add_text_field("title", TEXT);
/// # let rating = schema_builder.add_u64_field("rating", FAST);
/// # let schema = schema_builder.build();
/// #
/// # let index = Index::create_in_ram(schema);
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// # index_writer.add_document(doc!(title => "The Name of the Wind", rating => 92u64))?;
/// # index_writer.add_document(doc!(title => "The Diary of Muadib", rating => 97u64))?;
/// # index_writer.add_document(doc!(title => "A Dairy Cow", rating => 63u64))?;
/// # index_writer.add_document(doc!(title => "The Diary of a Young Girl", rating => 80u64))?;
/// # index_writer.commit()?;
/// # let reader = index.reader()?;
/// # let query = QueryParser::for_index(&index, vec![title]).parse_query("diary")?;
/// # let top_docs = docs_sorted_by_rating(&reader.searcher(), &query)?;
/// # assert_eq!(top_docs,
/// # vec![(97u64, DocAddress::new(0u32, 1)),
/// # (80u64, DocAddress::new(0u32, 3))]);
/// # Ok(())
/// # }
/// /// Searches the document matching the given query, and
/// /// collects the top 10 documents, order by the u64-`field`
/// /// given in argument.
/// fn docs_sorted_by_rating(searcher: &Searcher,
/// query: &dyn Query)
/// -> tantivy::Result<Vec<(u64, DocAddress)>> {
///
/// // This is where we build our topdocs collector
/// //
/// // Note the `rating_field` needs to be a FAST field here.
/// let top_books_by_rating = TopDocs
/// ::with_limit(10)
/// .order_by_fast_field("rating", Order::Desc);
///
/// // ... and here are our documents. Note this is a simple vec.
/// // The `u64` in the pair is the value of our fast field for
/// // each documents.
/// //
/// // The vec is sorted decreasingly by `sort_by_field`, and has a
/// // length of 10, or less if not enough documents matched the
/// // query.
/// let resulting_docs: Vec<(u64, DocAddress)> =
/// searcher.search(query, &top_books_by_rating)?;
///
/// Ok(resulting_docs)
/// }
/// ```
///
/// # See also
///
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
pub fn order_by_u64_field(
self,
field: impl ToString,
order: Order,
) -> impl Collector<Fruit = Vec<(u64, DocAddress)>> {
CustomScoreTopCollector::new(
ScorerByField {
field: field.to_string(),
order,
},
self.0.into_tscore(),
)
}
/// Set top-K to rank documents by a given fast field.
///
/// If the field is not a fast field, or its field type does not match the generic type, this
/// method does not panic, but an explicit error will be returned at the moment of
/// collection.
///
/// Note that this method is a generic. The requested fast field type will be often
/// inferred in your code by the rust compiler.
///
/// Implementation-wise, for performance reason, tantivy will manipulate the u64 representation
/// of your fast field until the last moment.
///
/// # Example
///
/// ```rust
/// # use tantivy::schema::{Schema, FAST, TEXT};
/// # use tantivy::{doc, Index, DocAddress,Order};
/// # use tantivy::query::{Query, AllQuery};
/// use tantivy::Searcher;
/// use tantivy::collector::TopDocs;
///
/// # fn main() -> tantivy::Result<()> {
/// # let mut schema_builder = Schema::builder();
/// # let title = schema_builder.add_text_field("company", TEXT);
/// # let revenue = schema_builder.add_i64_field("revenue", FAST);
/// # let schema = schema_builder.build();
/// #
/// # let index = Index::create_in_ram(schema);
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// # index_writer.add_document(doc!(title => "MadCow Inc.", revenue => 92_000_000i64))?;
/// # index_writer.add_document(doc!(title => "Zozo Cow KKK", revenue => 119_000_000i64))?;
/// # index_writer.add_document(doc!(title => "Declining Cow", revenue => -63_000_000i64))?;
/// # assert!(index_writer.commit().is_ok());
/// # let reader = index.reader()?;
/// # let top_docs = docs_sorted_by_revenue(&reader.searcher(), &AllQuery, "revenue")?;
/// # assert_eq!(top_docs,
/// # vec![(119_000_000i64, DocAddress::new(0, 1)),
/// # (92_000_000i64, DocAddress::new(0, 0))]);
/// # Ok(())
/// # }
/// /// Searches the document matching the given query, and
/// /// collects the top 10 documents, order by the u64-`field`
/// /// given in argument.
/// fn docs_sorted_by_revenue(searcher: &Searcher,
/// query: &dyn Query,
/// revenue_field: &str)
/// -> tantivy::Result<Vec<(i64, DocAddress)>> {
///
/// // This is where we build our topdocs collector
/// //
/// // Note the generics parameter that needs to match the
/// // type `sort_by_field`. revenue_field here is a FAST i64 field.
/// let top_company_by_revenue = TopDocs
/// ::with_limit(2)
/// .order_by_fast_field("revenue", Order::Desc);
///
/// // ... and here are our documents. Note this is a simple vec.
/// // The `i64` in the pair is the value of our fast field for
/// // each documents.
/// //
/// // The vec is sorted decreasingly by `sort_by_field`, and has a
/// // length of 10, or less if not enough documents matched the
/// // query.
/// let resulting_docs: Vec<(i64, DocAddress)> =
/// searcher.search(query, &top_company_by_revenue)?;
///
/// Ok(resulting_docs)
/// }
/// ```
pub fn order_by_fast_field<TFastValue>(
self,
fast_field: impl ToString,
order: Order,
) -> impl Collector<Fruit = Vec<(TFastValue, DocAddress)>>
where
TFastValue: FastValue,
{
let u64_collector = self.order_by_u64_field(fast_field.to_string(), order.clone());
FastFieldConvertCollector {
collector: u64_collector,
field: fast_field.to_string(),
fast_value: PhantomData,
order,
}
}
/// Ranks the documents using a custom score.
///
/// This method offers a convenient way to tweak or replace
/// the documents score. As suggested by the prototype you can
/// manually define your own [`ScoreTweaker`]
/// and pass it as an argument, but there is a much simpler way to
/// tweak your score: you can use a closure as in the following
/// example.
///
/// # Example
///
/// Typically, you will want to rely on one or more fast fields,
/// to alter the original relevance `Score`.
///
/// For instance, in the following, we assume that we are implementing
/// an e-commerce website that has a fast field called `popularity`
/// that rates whether a product is typically often bought by users.
///
/// In the following example will will tweak our ranking a bit by
/// boosting popular products a notch.
///
/// In more serious application, this tweaking could involve running a
/// learning-to-rank model over various features
///
/// ```rust
/// # use tantivy::schema::{Schema, FAST, TEXT};
/// # use tantivy::{doc, Index, DocAddress, DocId, Score};
/// # use tantivy::query::QueryParser;
/// use tantivy::SegmentReader;
/// use tantivy::collector::TopDocs;
/// use tantivy::schema::Field;
///
/// fn create_schema() -> Schema {
/// let mut schema_builder = Schema::builder();
/// schema_builder.add_text_field("product_name", TEXT);
/// schema_builder.add_u64_field("popularity", FAST);
/// schema_builder.build()
/// }
///
/// fn create_index() -> tantivy::Result<Index> {
/// let schema = create_schema();
/// let index = Index::create_in_ram(schema);
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// let product_name = index.schema().get_field("product_name").unwrap();
/// let popularity: Field = index.schema().get_field("popularity").unwrap();
/// index_writer.add_document(doc!(product_name => "The Diary of Muadib", popularity => 1u64))?;
/// index_writer.add_document(doc!(product_name => "A Dairy Cow", popularity => 10u64))?;
/// index_writer.add_document(doc!(product_name => "The Diary of a Young Girl", popularity => 15u64))?;
/// index_writer.commit()?;
/// Ok(index)
/// }
///
/// let index = create_index().unwrap();
/// let product_name = index.schema().get_field("product_name").unwrap();
/// let popularity: Field = index.schema().get_field("popularity").unwrap();
///
/// let user_query_str = "diary";
/// let query_parser = QueryParser::for_index(&index, vec![product_name]);
/// let query = query_parser.parse_query(user_query_str).unwrap();
///
/// // This is where we build our collector with our custom score.
/// let top_docs_by_custom_score = TopDocs
/// ::with_limit(10)
/// .tweak_score(move |segment_reader: &SegmentReader| {
/// // The argument is a function that returns our scoring
/// // function.
/// //
/// // The point of this "mother" function is to gather all
/// // of the segment level information we need for scoring.
/// // Typically, fast_fields.
/// //
/// // In our case, we will get a reader for the popularity
/// // fast field. For simplicity we read the first or default value in the fast
/// // field.
/// let popularity_reader =
/// segment_reader.fast_fields().u64("popularity").unwrap().first_or_default_col(0);
///
/// // We can now define our actual scoring function
/// move |doc: DocId, original_score: Score| {
/// let popularity: u64 = popularity_reader.get_val(doc);
/// // Well.. For the sake of the example we use a simple logarithm
/// // function.
/// let popularity_boost_score = ((2u64 + popularity) as Score).log2();
/// popularity_boost_score * original_score
/// }
/// });
/// let reader = index.reader().unwrap();
/// let searcher = reader.searcher();
/// // ... and here are our documents. Note this is a simple vec.
/// // The `Score` in the pair is our tweaked score.
/// let resulting_docs: Vec<(Score, DocAddress)> =
/// searcher.search(&query, &top_docs_by_custom_score).unwrap();
/// ```
///
/// # See also
/// - [custom_score(...)](TopDocs::custom_score)
pub fn tweak_score<TScore, TScoreSegmentTweaker, TScoreTweaker>(
self,
score_tweaker: TScoreTweaker,
) -> impl Collector<Fruit = Vec<(TScore, DocAddress)>>
where
TScore: 'static + Send + Sync + Clone + PartialOrd,
TScoreSegmentTweaker: ScoreSegmentTweaker<TScore> + 'static,
TScoreTweaker: ScoreTweaker<TScore, Child = TScoreSegmentTweaker> + Send + Sync,
{
TweakedScoreTopCollector::new(score_tweaker, self.0.into_tscore())
}
/// Ranks the documents using a custom score.
///
/// This method offers a convenient way to use a different score.
///
/// As suggested by the prototype you can manually define your own [`CustomScorer`]
/// and pass it as an argument, but there is a much simpler way to
/// tweak your score: you can use a closure as in the following
/// example.
///
/// # Limitation
///
/// This method only makes it possible to compute the score from a given
/// `DocId`, fastfield values for the doc and any information you could
/// have precomputed beforehand. It does not make it possible for instance
/// to compute something like TfIdf as it does not have access to the list of query
/// terms present in the document, nor the term frequencies for the different terms.
///
/// It can be used if your search engine relies on a learning-to-rank model for instance,
/// which does not rely on the term frequencies or positions as features.
///
/// # Example
///
/// ```rust
/// # use tantivy::schema::{Schema, FAST, TEXT};
/// # use tantivy::{doc, Index, DocAddress, DocId};
/// # use tantivy::query::QueryParser;
/// use tantivy::SegmentReader;
/// use tantivy::collector::TopDocs;
/// use tantivy::schema::Field;
///
/// # fn create_schema() -> Schema {
/// # let mut schema_builder = Schema::builder();
/// # schema_builder.add_text_field("product_name", TEXT);
/// # schema_builder.add_u64_field("popularity", FAST);
/// # schema_builder.add_u64_field("boosted", FAST);
/// # schema_builder.build()
/// # }
/// #
/// # fn main() -> tantivy::Result<()> {
/// # let schema = create_schema();
/// # let index = Index::create_in_ram(schema);
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
/// # let product_name = index.schema().get_field("product_name").unwrap();
/// #
/// let popularity: Field = index.schema().get_field("popularity").unwrap();
/// let boosted: Field = index.schema().get_field("boosted").unwrap();
/// # index_writer.add_document(doc!(boosted=>1u64, product_name => "The Diary of Muadib", popularity => 1u64))?;
/// # index_writer.add_document(doc!(boosted=>0u64, product_name => "A Dairy Cow", popularity => 10u64))?;
/// # index_writer.add_document(doc!(boosted=>0u64, product_name => "The Diary of a Young Girl", popularity => 15u64))?;
/// # index_writer.commit()?;
/// // ...
/// # let user_query = "diary";
/// # let query = QueryParser::for_index(&index, vec![product_name]).parse_query(user_query)?;
///
/// // This is where we build our collector with our custom score.
/// let top_docs_by_custom_score = TopDocs
/// ::with_limit(10)
/// .custom_score(move |segment_reader: &SegmentReader| {
/// // The argument is a function that returns our scoring
/// // function.
/// //
/// // The point of this "mother" function is to gather all
/// // of the segment level information we need for scoring.
/// // Typically, fast_fields.
/// //
/// // In our case, we will get a reader for the popularity
/// // fast field and a boosted field.
/// //
/// // We want to get boosted items score, and when we get
/// // a tie, return the item with the highest popularity.
/// //
/// // Note that this is implemented by using a `(u64, u64)`
/// // as a score.
/// let popularity_reader =
/// segment_reader.fast_fields().u64("popularity").unwrap().first_or_default_col(0);
/// let boosted_reader =
/// segment_reader.fast_fields().u64("boosted").unwrap().first_or_default_col(0);
///
/// // We can now define our actual scoring function
/// move |doc: DocId| {
/// let popularity: u64 = popularity_reader.get_val(doc);
/// let boosted: u64 = boosted_reader.get_val(doc);
/// // Score do not have to be `f64` in tantivy.
/// // Here we return a couple to get lexicographical order
/// // for free.
/// (boosted, popularity)
/// }
/// });
/// # let reader = index.reader()?;
/// # let searcher = reader.searcher();
/// // ... and here are our documents. Note this is a simple vec.
/// // The `Score` in the pair is our tweaked score.
/// let resulting_docs: Vec<((u64, u64), DocAddress)> =
/// searcher.search(&*query, &top_docs_by_custom_score)?;
///
/// # Ok(())
/// # }
/// ```
///
/// # See also
/// - [tweak_score(...)](TopDocs::tweak_score)
pub fn custom_score<TScore, TCustomSegmentScorer, TCustomScorer>(
self,
custom_score: TCustomScorer,
) -> impl Collector<Fruit = Vec<(TScore, DocAddress)>>
where
TScore: 'static + Send + Sync + Clone + PartialOrd,
TCustomSegmentScorer: CustomSegmentScorer<TScore> + 'static,
TCustomScorer: CustomScorer<TScore, Child = TCustomSegmentScorer> + Send + Sync,
{
CustomScoreTopCollector::new(custom_score, self.0.into_tscore())
}
}
impl Collector for TopDocs {
type Fruit = Vec<(Score, DocAddress)>;
type Child = TopScoreSegmentCollector;
fn for_segment(
&self,
segment_local_id: SegmentOrdinal,
reader: &SegmentReader,
) -> crate::Result<Self::Child> {
let collector = self.0.for_segment(segment_local_id, reader);
Ok(TopScoreSegmentCollector(collector))
}
fn requires_scoring(&self) -> bool {
true
}
fn merge_fruits(
&self,
child_fruits: Vec<Vec<(Score, DocAddress)>>,
) -> crate::Result<Self::Fruit> {
self.0.merge_fruits(child_fruits)
}
fn collect_segment(
&self,
weight: &dyn Weight,
segment_ord: u32,
reader: &SegmentReader,
) -> crate::Result<<Self::Child as SegmentCollector>::Fruit> {
let heap_len = self.0.limit + self.0.offset;
let mut top_n: TopNComputer<_, _> = TopNComputer::new(heap_len);
if let Some(alive_bitset) = reader.alive_bitset() {
let mut threshold = Score::MIN;
top_n.threshold = Some(threshold);
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
if alive_bitset.is_deleted(doc) {
return threshold;
}
top_n.push(score, doc);
threshold = top_n.threshold.unwrap_or(Score::MIN);
threshold
})?;
} else {
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
top_n.push(score, doc);
top_n.threshold.unwrap_or(Score::MIN)
})?;
}
let fruit = top_n
.into_sorted_vec()
.into_iter()
.map(|cid| {
(
cid.feature,
DocAddress {
segment_ord,
doc_id: cid.doc,
},
)
})
.collect();
Ok(fruit)
}
}
/// Segment Collector associated with `TopDocs`.
pub struct TopScoreSegmentCollector(TopSegmentCollector<Score>);
impl SegmentCollector for TopScoreSegmentCollector {
type Fruit = Vec<(Score, DocAddress)>;
fn collect(&mut self, doc: DocId, score: Score) {
self.0.collect(doc, score);
}
fn harvest(self) -> Vec<(Score, DocAddress)> {
self.0.harvest()
}
}
/// Fast TopN Computation
///
/// Capacity of the vec is 2 * top_n.
/// The buffer is truncated to the top_n elements when it reaches the capacity of the Vec.
/// That means capacity has special meaning and should be carried over when cloning or serializing.
///
/// For TopN == 0, it will be relative expensive.
#[derive(Serialize, Deserialize)]
#[serde(from = "TopNComputerDeser<Score, D, REVERSE_ORDER>")]
pub struct TopNComputer<Score, D, const REVERSE_ORDER: bool = true> {
/// The buffer reverses sort order to get top-semantics instead of bottom-semantics
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
top_n: usize,
pub(crate) threshold: Option<Score>,
}
impl<Score: std::fmt::Debug, D, const REVERSE_ORDER: bool> std::fmt::Debug
for TopNComputer<Score, D, REVERSE_ORDER>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TopNComputer")
.field("buffer_len", &self.buffer.len())
.field("top_n", &self.top_n)
.field("current_threshold", &self.threshold)
.finish()
}
}
// Intermediate struct for TopNComputer for deserialization, to keep vec capacity
#[derive(Deserialize)]
struct TopNComputerDeser<Score, D, const REVERSE_ORDER: bool> {
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
top_n: usize,
threshold: Option<Score>,
}
// Custom clone to keep capacity
impl<Score: Clone, D: Clone, const REVERSE_ORDER: bool> Clone
for TopNComputer<Score, D, REVERSE_ORDER>
{
fn clone(&self) -> Self {
let mut buffer_clone = Vec::with_capacity(self.buffer.capacity());
buffer_clone.extend(self.buffer.iter().cloned());
TopNComputer {
buffer: buffer_clone,
top_n: self.top_n,
threshold: self.threshold.clone(),
}
}
}
impl<Score, D, const R: bool> From<TopNComputerDeser<Score, D, R>> for TopNComputer<Score, D, R> {
fn from(mut value: TopNComputerDeser<Score, D, R>) -> Self {
let expected_cap = value.top_n.max(1) * 2;
let current_cap = value.buffer.capacity();
if current_cap < expected_cap {
value.buffer.reserve_exact(expected_cap - current_cap);
} else {
value.buffer.shrink_to(expected_cap);
}
TopNComputer {
buffer: value.buffer,
top_n: value.top_n,
threshold: value.threshold,
}
}
}
impl<Score, D, const R: bool> TopNComputer<Score, D, R>
where
Score: PartialOrd + Clone,
D: Ord,
{
/// Create a new `TopNComputer`.
/// Internally it will allocate a buffer of size `2 * top_n`.
pub fn new(top_n: usize) -> Self {
let vec_cap = top_n.max(1) * 2;
TopNComputer {
buffer: Vec::with_capacity(vec_cap),
top_n,
threshold: None,
}
}
/// Push a new document to the top n.
/// If the document is below the current threshold, it will be ignored.
#[inline]
pub fn push(&mut self, feature: Score, doc: D) {
if let Some(last_median) = self.threshold.clone() {
if feature < last_median {
return;
}
}
if self.buffer.len() == self.buffer.capacity() {
let median = self.truncate_top_n();
self.threshold = Some(median);
}
// This is faster since it avoids the buffer resizing to be inlined from vec.push()
// (this is in the hot path)
// TODO: Replace with `push_within_capacity` when it's stabilized
let uninit = self.buffer.spare_capacity_mut();
// This cannot panic, because we truncate_median will at least remove one element, since
// the min capacity is 2.
uninit[0].write(ComparableDoc { doc, feature });
// This is safe because it would panic in the line above
unsafe {
self.buffer.set_len(self.buffer.len() + 1);
}
}
#[inline(never)]
fn truncate_top_n(&mut self) -> Score {
// Use select_nth_unstable to find the top nth score
let (_, median_el, _) = self.buffer.select_nth_unstable(self.top_n);
let median_score = median_el.feature.clone();
// Remove all elements below the top_n
self.buffer.truncate(self.top_n);
median_score
}
/// Returns the top n elements in sorted order.
pub fn into_sorted_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
if self.buffer.len() > self.top_n {
self.truncate_top_n();
}
self.buffer.sort_unstable();
self.buffer
}
/// Returns the top n elements in stored order.
/// Useful if you do not need the elements in sorted order,
/// for example when merging the results of multiple segments.
pub fn into_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
if self.buffer.len() > self.top_n {
self.truncate_top_n();
}
self.buffer
}
}
#[cfg(test)]
mod tests {
use super::{TopDocs, TopNComputer};
use crate::collector::top_collector::ComparableDoc;
use crate::collector::Collector;
use crate::query::{AllQuery, Query, QueryParser};
use crate::schema::{Field, Schema, FAST, STORED, TEXT};
use crate::time::format_description::well_known::Rfc3339;
use crate::time::OffsetDateTime;
use crate::{
assert_nearly_equals, DateTime, DocAddress, DocId, Index, IndexWriter, Order, Score,
SegmentReader,
};
fn make_index() -> crate::Result<Index> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
// writing the segment
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
index_writer.add_document(doc!(text_field=>"Hello happy tax payer."))?;
index_writer.add_document(doc!(text_field=>"Droopy says hello happy tax payer"))?;
index_writer.add_document(doc!(text_field=>"I like Droopy"))?;
index_writer.commit()?;
Ok(index)
}
fn assert_results_equals(results: &[(Score, DocAddress)], expected: &[(Score, DocAddress)]) {
for (result, expected) in results.iter().zip(expected.iter()) {
assert_eq!(result.1, expected.1);
crate::assert_nearly_equals!(result.0, expected.0);
}
}
#[test]
fn test_topn_computer_serde() {
let computer: TopNComputer<u32, u32> = TopNComputer::new(1);
let computer_ser = serde_json::to_string(&computer).unwrap();
let mut computer: TopNComputer<u32, u32> = serde_json::from_str(&computer_ser).unwrap();
computer.push(1u32, 5u32);
computer.push(1u32, 0u32);
computer.push(1u32, 7u32);
assert_eq!(
computer.into_sorted_vec(),
&[ComparableDoc {
feature: 1u32,
doc: 0u32,
},]
);
}
#[test]
fn test_empty_topn_computer() {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(0);
computer.push(1u32, 1u32);
computer.push(1u32, 2u32);
computer.push(1u32, 3u32);
assert!(computer.into_sorted_vec().is_empty());
}
#[test]
fn test_topn_computer() {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(2);
computer.push(1u32, 1u32);
computer.push(2u32, 2u32);
computer.push(3u32, 3u32);
computer.push(2u32, 4u32);
computer.push(1u32, 5u32);
assert_eq!(
computer.into_sorted_vec(),
&[
ComparableDoc {
feature: 3u32,
doc: 3u32,
},
ComparableDoc {
feature: 2u32,
doc: 2u32,
}
]
);
}
#[test]
fn test_topn_computer_no_panic() {
for top_n in 0..10 {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(top_n);
for _ in 0..1 + top_n * 2 {
computer.push(1u32, 1u32);
}
let _vals = computer.into_sorted_vec();
}
}
#[test]
fn test_top_collector_not_at_capacity_without_offset() -> crate::Result<()> {
let index = make_index()?;
let field = index.schema().get_field("text").unwrap();
let query_parser = QueryParser::for_index(&index, vec![field]);
let text_query = query_parser.parse_query("droopy tax")?;
let score_docs: Vec<(Score, DocAddress)> = index
.reader()?
.searcher()
.search(&text_query, &TopDocs::with_limit(4))?;
assert_results_equals(
&score_docs,
&[
(0.81221175, DocAddress::new(0u32, 1)),
(0.5376842, DocAddress::new(0u32, 2)),
(0.48527452, DocAddress::new(0, 0)),
],
);
Ok(())
}
#[test]
fn test_top_collector_not_at_capacity_with_offset() {
let index = make_index().unwrap();
let field = index.schema().get_field("text").unwrap();
let query_parser = QueryParser::for_index(&index, vec![field]);
let text_query = query_parser.parse_query("droopy tax").unwrap();
let score_docs: Vec<(Score, DocAddress)> = index
.reader()
.unwrap()
.searcher()
.search(&text_query, &TopDocs::with_limit(4).and_offset(2))
.unwrap();
assert_results_equals(&score_docs[..], &[(0.48527452, DocAddress::new(0, 0))]);
}
#[test]
fn test_top_collector_at_capacity() {