-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDFIG_init9.m
139 lines (110 loc) · 3.53 KB
/
DFIG_init9.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
clear
% DFIG parameters -> Rotor parameters referred to the stator side
f = 50; % Stator frequency (Hz)
Ps = 2e6; % Rated stator power (W)
n = 1500; % Rated rotational speed (rev/min)
Vs = 690; % Rated stator voltage (V)
Is = 1760; % Rated stator current (A)
Tem = 12732; % Rated torque (N.m)
p=2; % Pole pair
u = 1/3; % Stator/rotor turns ratio
Vr = 2070; % Rated rotor voltage (non-reached) (V)
smax = 1/3; % Maximum slip
Vr_stator = (Vr*smax) *u; % Rated rotor voltage referred to stator (V)
Rs = 2.6e-3; % Stator resistance(ohm)
Lsi = 0.087e-3; % Leakage inductance (stator & rotor) (H)
Lm = 2.5e-3; % Magnetizing inductance (H)
Rr = 2.9e-3; % Rotor resistance referred to stator (ohm)
Ls = Lm + Lsi; % Stator inductance (H)
Lr = Lm + Lsi; % Rotor inductance (H)
% Vbus = Vr_stator*sqrt(2); % DC de bus voltge referred to stator (V)
Vbus = 1150; % as in tutorial 4
sigma = 1-Lm^2/(Ls*Lr);
Fs = Vs*sqrt(2/3)/(2*pi*f); % Stator Flux (aprox.) (Wb)
J = 127; % Inertia, originally 127, reduced by 2 to make the response faster
D = 10e-3; %damping = 0. originally D = 1e-3;
fsw = 4e3;
Ts = 1/fsw/50;
kT = -1.5*p*(Lm/Ls)*Fs; % kT, coef of output of the speed controller
tau_i = (sigma*Lr)/Rr;
tau_n = 0.05;
wni = 100*(1/tau_i);
wnn = 1/tau_n;
kp_id = (2*wni*sigma*Lr)-Rr;
kp_iq = kp_id;
ki_id = (wni^2)*Lr*sigma;
ki_iq = ki_id;
kp_n = (2*wnn*J)/p; %kp_n = (2*wnn*J)/p;
ki_n = (wnn^2)*J/p; %ki_n = (wnn^2)*J/p;
% Three blade wind turbine mode
N = 100; % Gearbox ratio
Radio= 42; % blade radius
ro= 1.225; % Air density
% Cp and Ct curves
beta=0; % Pitch angle
ind2=1;
for lambda=0.1:0.01:11.8
lambdai(ind2)= (1./((1./(lambda-0.02.*beta) + (0.003./ (beta^3+1)))));
Cp(ind2)=0.73*(151./lambdai(ind2) - 0.58*beta - 0.002.*beta^2.14-13.2).*(exp(-18.4./lambdai (ind2)));
Ct(ind2)=Cp(ind2)/lambda;
ind2=ind2+1;
end
tab_lambda=[0.1:0.01:11.8];
% Kopt for MPPT
Cp_max = 0.44;
lambda_opt = 7.2;
Kopt = ((0.5*ro*pi* (Radio^5) *Cp_max)/(lambda_opt^3));
% Power curve in fucntion of wind speed
P = 1.0e+06 *[0,0,0,0,0,0,0,0.0472,0.1097,0.1815,0.2568,0.3418, ...
0.4437,0.5642, 0.7046, 0.8667,1.0518,1.2616, 1.4976, 1.7613,2.0534,...
2.3513,2.4024,2.4024,2.4024, 2.4024,2.4024,2.4024];
V = [0.0000,0.5556,1.1111,1.6667,2.2222,2.7778,3.3333,3.8889, 4.4444,...
5.0000,5.5556,6.1111,6.6667,7.2222,7.7778,8.3333,8.8889,9.4444, ...
10.0000,10.5556,11.1111, 11.6667,12.2222,12.7778,13.3333, 13.8889,...
14.4444,15.0000];
% figure
% subplot(1,2,1)
% plot(tab_lambda, Ct, 'linewidth',1.5)
% xlabel('\lambda', 'fontsize',14)
% ylabel('Ct', 'fontsize',14)
% subplot(1,2,2)
% plot (V, P, 'linewidth', 1.5)
% grid
% xlabel('Wind speed (m/s)', 'fontsize',14)
% ylabel('Power (W)', 'fontsize',14)
% Grid side converter
Cbus = 80e-3; % DC bus capacitance
Rg = 20e-6; % Grid side filter's resisatance
Lg = 400e-6; % Grid side filter's inductance
Kpg = 1/(1.5*Vs*sqrt(2/3));
Kqg = -Kpg;
% PI regulators
tau_ig = Lg/Rg;
wnig = 60*2*pi;
kp_idg = (2*wnig*Lg)-Rg;
kp_iqg = kp_idg;
ki_idg = (wnig^2)*Lg;
ki_iqg = ki_idg;
kp_v = -1000;
ki_v = -300000; %ki_v = -300000;
Rcrowbar = 0.2; % crowbar circuit resistance
Tcrowbar = 0.1; % crowbar duration 0.1s
t_dip= 3;
t_recover = 3.5;
t_normal = 4.17;
a11 = -Rs/(sigma*Ls);
a22 = a11;
a33 = -Rr/(sigma*Lr);
a44 = a33;
a13 = Rs*Lm/(sigma*Ls*Lr);
a24 = a13;
a31 = Rr*Lm/(sigma*Ls*Lr);
a42 = a31;
A = [a11, 0, a13, 0;
0, a22, 0, a24;
a31, 0, a33, 0;
0, a42, 0, a44];
% A = [a11, 0, a13, 0;
% 0, a11, 0, a13;
% a31, 0, a33, 0;
% 0, a31, 0, a33];