-
Notifications
You must be signed in to change notification settings - Fork 20
/
orderbookBackWardInductionMy.R
203 lines (176 loc) · 8.89 KB
/
orderbookBackWardInductionMy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Functions for solving HJB-QVI equation using backward induction method.
# plt - struktura, v kotoroi` opredeleny` osnovny`e peremenny`e i politiki
# plt.T - chislo vremenny`kh tochek rascheta, plt.S - chislo znachenii` spreda (=3)
# plt.F- chislo tochek rascheta disbalansa ob``ema, plt.Y - kolichestvo znachenii` otkry`toi` pozitcii
# plt.dF - shag velichiny` disbalansa ob``emov, plt.Fmax - modul` maksimal`nogo znacheniia disbalansa
# plt.ticksize - minimal`ny`i` shag ceny`, plt.comiss - birzhevaia komissiia
# plt.w - massiv znacheniia chislennoi` funktcii vladeniia
# plt.polmk - bulevy`i` massiv, opredeliaiushchii`, kakaia politika budet ispol`zovana pri tekushchikh znacheniiakh [t,y,f,s]
# esli true - limitny`e ordera, false - market ordera
# plt.thtkq - massiv ob``emov market orderov pri dei`stvii politiki market orderov
# plt.thmka, plt.thmkb - massiv znachenii` 0 (vy`stavlenie na luchshuiu cenu) ili 1 (vy`stavlenie na shag luchshe luchshei` ceny`)
# pri dei`stvii politiki limitny`kh orderov
# maxlot - absoliutnoe maksimal`noe znachenie otkry`toi` pozitcii
SolveBackwardInduction<-function()
{
# Massiv znachenii` funktcii vladeniia
# Dvigaemsia vniz po vremennoi` setke
#Pervy`i` shag - vy`chislenie funktcii vladeniia w v konechny`i` moment vremeni T
for (f in seq(along.with=obMPdf$FF))
w[obMPdf$NT,seq(along.with=obMPdf$YY) ,f,seq(along.with=obMPdf$SS)] <<- -abs(obMPdf$YY) %*% t(obMPdf$SS * obMPdf$deltaTick / 2 + obMPdf$eps)
for (t in obMPdf$NT:1)
{
#Vy`chislenie vy`razheniia L dlia opredeleniia politiki limit orderov
for (s in seq(along.with=obMPdf$SS))
{
L <- matrix(data=0,nrow=obMPdf$NY, ncol=obMPdf$NF)
if (t < obMPdf$NT)
{
for (y in seq(along.with=obMPdf$YY))
{
#Dvigaemsia po setke disbalansa ob``emov
for (f in seq(along.with=obMPdf$FF))
{
#V ostal`ny`e momenty` vremeni nahodim znacheniia vektorov L (poka bez umnozheniia na
# differentcial`ny`e matritcy` v pervoi` chasti vy`razheniia dlia L)
L[y,f] = LV(y, f, s, t)
}
#Peremnozhenie matrichnoi` chasti i vektorov L, poluchenny`kh vy`she, v rezul`tate poluchaem
# polnost`iu rasschitanny`e vektora L. plt.rmatrix - matrichnaia chast`
L[y,]<-plt.Lmatrix %*% L[y,]
}
}
}
#Vy`chislenie vy`razheniia M*L dlia opredeleniia politiki market orderov
if (t <obMPdf$NT)
{
#Dvigaemsia po setke znacheniia spreda
for (s in seq(along.with=obMPdf$SS))
{
#Dvigaemsia po setke otkry`toi` pozitcii
for (y in seq(along.with=obMPdf$YY))
{
#Dvigaemsia po setke disbalansa ob``emov
for (f in seq(along.with=obMPdf$FF))
{
#Maksimal`noe znachenie kontraktov, dopustimoe v market ordere na dannom shage
dzmin = max(-y+1, -obMPdf$dzetamax)
dzmax = min(obMPdf$NY-y,obMPdf$dzetamax)
ML = -1000000
MLTemp=0
#Dvigaemsia po setke ob``ema market ordera
for (dz in seq(dzmin,dzmax,by=1))
{
#Vy`chislenie operatora M*L dlia kazhdogo znacheniia ob``ema market ordera
MLTemp=L[y + dz, f] - abs(dz) * (obMPdf$SS[s] * obMPdf$deltaTick / 2 + obMPdf$eps)
if( MLTemp> ML)
{
ML = MLTemp
#Zanesenie v politiku market orderov znacheniia ob``ema
plt.thtkq[t, y, f,s] <<- dz
}
}
#Esli operator M*L bol`she operatora L pri vsekh ishodny`kh parametrakh, vy`biraetsia politika
#market orderov
if (ML > L[y,f])
{
#Znacheniiu funktcii vladeniia w prisvaivaetsia znachenie operatora M*L
w[t,y,f,s] <<- ML
plt.polmk[t,y,f,s] <<- FALSE
}
# Inache - politika limitny`kh orderov
else
{
#Znacheniiu funktcii vladeniia prisvaivaetsia znachenie operatora L
w[t, y,f,s] <<- L[y,f]
plt.polmk[t, y,f,s] <<- TRUE
}
#DEBUG
cat("'\r"," ")
cat("'\r",paste("plt.polmk",plt.polmk[t, y,f,s], t, y, f, s))
}
}
}
}
}
}
#Funktciia vy`chisleniia znacheniia operatora L, bez peremnozheniia na matrichnuiu chast`
LV<-function(y,f, s, t){
#Vy`chislenie znachenii` funktcii veroiatnosti skachkov ceny` na polshaga i shag psi1,2, s koe`ffitcientami beta1,2
psi1res = 1/(1+exp(-obMPdf$beta1*obMPdf$FF[f]))
psi2res = 1/(1+exp(-obMPdf$beta2*obMPdf$FF[f]))
#Vy`chislenie matozhidaniia izmeneniia srednei` ceny`, plt.lj1,plt.lj2 - intensivnosti skachkov ceny`
Edp = obMPdf$lambdaJ1 * (obMPdf$deltaTick / 2) * (2 * psi1res - 1) + obMPdf$lambdaJ2 * obMPdf$deltaTick * (2 * psi2res - 1)
#Vy`chislenie operatora vozdei`stviia spreda na funktciiu vladeniia, plt.ro - matritca perehodov sostoianii` spreda
Ls = 0
for (j in seq( 1, nrow(obMPdf$roS)))
{
Ls =Ls+ (w[t+1, y,f, j] - w[t+1, y,f,s]) * obMPdf$roS[s,j]
}
#lambdaS - intensivnost` skachkov spreda
Ls = obMPdf$lambdaS * Ls
#Vy`chislenie matozhidaniia srednekvadratichnogo izmeneniia ceny`
Edpp = 0.25 * obMPdf$lambdaJ1 + obMPdf$lambdaJ2
gv = -10000000
thmax = 1
#if (obMPdf$SS[s] == obMPdf$deltaTick) thmax = 0
if (s==1) thmax = 0
gvtemp = 0
#Vy`chislenie znachenii` veroiatnosti vziatiia limitny`kh orderov v ocheredi zaiavok h(f)
#plt.ch - koe`ffitcient v formule dlia veroiatnosti h(f)
hresp = 1/(1+exp(-obMPdf$dzeta0+obMPdf$dzeta1*obMPdf$FF[f]))
hresm = 1/(1+exp(-obMPdf$dzeta0-obMPdf$dzeta1*obMPdf$FF[f]))
#Vy`chislenie slagaemy`kh ga i gb v vy`razhenii dlia operatora L, thmax - maksimal`noe znachenie, kotoroe prinimaet
# politika dlia limitny`kh orderov - 1
for (i in 0:thmax)
{
for (k in 0:thmax)
{
#print(t+1, t, f,s)
gvtemp =(i * obMPdf$lambdaMA + (1 - i) * obMPdf$lambdaMA * hresp) *
(w[t+1,min(y + 1, obMPdf$NY), f, s] - w[t+1,y,f,s] +
obMPdf$SS[s] * obMPdf$deltaTick/2 - obMPdf$deltaTick*i)+
(k*obMPdf$lambdaMB + (1 - k) * obMPdf$lambdaMB * hresm) *
(w[t+1,max(y - 1, 1), f,s]-w[t+1,y,f,s] +
obMPdf$SS[s] * obMPdf$deltaTick/ 2 - obMPdf$deltaTick* k)
#Zanesenie znacheniia 0 ili 1 v politiku limitny`kh orderov
if (gvtemp > gv)
{
gv = gvtemp
plt.thmkb[t, y,f,s] <<- i
plt.thmka[t,y,f,s] <<- k
}
}
}
#Vy`chislenie znacheniia operatora L (bez umnozheniia na matrichnuiu chast`)
#plt.dt- shag vremeni, plt.gamma - mera riska
lv = w[t+1,y,f,s] + obMPdf$deltat *( obMPdf$YY[y] * Edp + Ls - obMPdf$gamma * obMPdf$YY[y]^2* Edpp + gv)
return(lv)
}
#Vy`chislenie matrichnoi` chasti vy`razheniia operatora L
SolveLMatrix<-function(){
uu<-c(1,-2,1, rep(0,obMPdf$NF-2))
uu<-rep(uu,obMPdf$NF+1)
uu<-uu[-1]
uu<-uu[1:obMPdf$NF^2]
D2<-matrix(uu, ncol=obMPdf$NF, nrow=obMPdf$NF, byrow=TRUE)
D2<-D2/obMPdf$deltaF^2
uun<-c(0,-1,1, rep(0,obMPdf$NF-2))
uun<-rep(uun,obMPdf$NF+1)
uun<-uun[-1]
uun<-uun[1:(((obMPdf$NF-1)/2)*obMPdf$NF)]#obMPdf$NF^2]
uup<-c(-1,1,0, rep(0,obMPdf$NF-2))
uup<-rep(uup,obMPdf$NF+1)
uup<-uup[-1]
uup<-uup[(((obMPdf$NF-1)/2)*obMPdf$NF+1):(obMPdf$NF^2)]
uu<-c(uun,uup)
D1<-matrix(uu, ncol=obMPdf$NF, nrow=obMPdf$NF, byrow=TRUE)
D1<-D1/obMPdf$deltaF
#Differentcial`ny`e matritcy` D1,2 i matritca identichnosti I.
#D1 = matrix(data=0,nrow=obMPdf$NF, ncol= obMPdf$NF)
#D2 = matrix(data=0,nrow=obMPdf$NF, ncol= obMPdf$NF)
I = diag(obMPdf$NF)
LM = matrix(nrow=obMPdf$NF, ncol= obMPdf$NF)
LM = I - 0.5*obMPdf$deltat * obMPdf$sigmaF^2 * D2 - obMPdf$deltat * obMPdf$alfaF * obMPdf$FF* D1
return(base::solve(LM))
}