-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathDemo-3-VGG16-PASCAL.py
57 lines (52 loc) · 2.79 KB
/
Demo-3-VGG16-PASCAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#Demo-3-VGG16-PASCAL.py
# Copyright (c) 2020 Rachel Lea Ballantyne Draelos
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE
import timeit
import torchvision #only needed if you're downloading data for the first time
from src import run_experiment
from models import custom_models_base
from load_dataset import custom_pascal
if __name__=='__main__':
general_results_dir = 'C:\\Users\\Rachel\\Documents\\Temp\\pytorch-computer-vision\\results'
voc_dataset_dir = 'C:\\Users\\Rachel\\Documents\\Data\\VOC2012'
sbd_dataset_dir = 'C:\\Users\\Rachel\\Documents\\Data\\SBD'
#Uncomment the following lines if you need to download the datasets:
#voc_train = torchvision.datasets.VOCSegmentation(voc_dataset_dir, year='2012',image_set='train',download=True)
#voc_val = torchvision.datasets.VOCSegmentation(voc_dataset_dir, year='2012',image_set='val',download=True)
#sbd_train_noval = torchvision.datasets.SBDataset(sbd_dataset_dir, image_set='train_noval', mode='segmentation',download=True)
#Run Demo 3
tot0 = timeit.default_timer()
run_experiment.DoExperiment(descriptor='VGG16_PASCAL',
general_results_dir=general_results_dir,
custom_net = custom_models_base.VGG16,
custom_net_args = {},
learning_rate = 1e-3, #default 1e-3
weight_decay = 1e-7, #default 1e-7
num_epochs=100, patience = 15,
batch_size = 64, debug=False,
use_test_set = False, task = 'train_eval',
old_params_dir = '',
chosen_dataset = custom_pascal.PascalVOC2012,
chosen_dataset_args = {'voc_dataset_dir':voc_dataset_dir,
'sbd_dataset_dir':sbd_dataset_dir})
tot1 = timeit.default_timer()
print('Total Time', round((tot1 - tot0)/60.0,2),'minutes')