forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
149 lines (129 loc) · 5.75 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import fire
import torch
import os
import sys
import time
from typing import List
import json
from transformers import LlamaTokenizer
from safety_utils import get_safety_checker
from model_utils import load_model, load_peft_model
def main(
model_name,
peft_model: str=None,
quantization: bool=False,
max_new_tokens =100, #The maximum numbers of tokens to generate
prompt_file: str=None,
output_file: str=None,
seed: int=42, #seed value for reproducibility
do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
**kwargs
):
print (f'prompt file {prompt_file}')
if prompt_file and output_file:
assert os.path.exists(
prompt_file
), f"Provided Prompt file does not exist {prompt_file}"
prompts = []
with open(prompt_file, "r") as fin:
data = json.load(fin)
for record in data:
prompts.append(record)
fout = open(output_file, 'w')
elif not sys.stdin.isatty():
user_prompt = "\n".join(sys.stdin.readlines())
prompts = [user_prompt]
else:
print("No user prompt provided. Exiting.")
sys.exit(1)
# Set the seeds for reproducibility
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
model = load_model(model_name, quantization)
tokenizer = LlamaTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens(
{
"pad_token": "<PAD>",
}
)
if peft_model:
model = load_peft_model(model, peft_model)
model.eval()
safety_checker = get_safety_checker(enable_azure_content_safety,
enable_sensitive_topics,
enable_saleforce_content_safety,
)
responses = []
count = 0
print (f'do sample {do_sample} max_new_tokens {max_new_tokens}')
for user_prompt in prompts:
user_prompt = user_prompt['prompt']
# Safety check of the user prompt
safety_results = [check(user_prompt) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print("User prompt deemed safe.")
#print(f"User prompt:\n{user_prompt}")
else:
print("User prompt deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
#print("Skipping the inferece as the prompt is not safe.")
#sys.exit(1) # Exit the program with an error status
batch = tokenizer(user_prompt, return_tensors="pt")
for k,v in batch.items():
print (f'{k}- num tokens {len(v[0])}')
batch = {k: v.to("cuda") for k, v in batch.items()}
start = time.perf_counter()
with torch.no_grad():
outputs = model.generate(
**batch,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
min_length=min_length,
use_cache=use_cache,
top_k=top_k,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
**kwargs
)
e2e_inference_time = (time.perf_counter()-start)*1000
print(f"the inference time is {e2e_inference_time} ms")
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
responses.append({'response': output_text})
# Safety check of the model output
safety_results = [check(output_text) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print("User input and model output deemed safe.")
#print(f"Model output:\n{output_text}")
else:
print("Model output deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
count += 1
print(f'finished {count} queries')
if output_file:
json.dump(responses, fout, indent=4)
fout.close()
if __name__ == "__main__":
fire.Fire(main)