-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
291 lines (241 loc) · 10.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from math import exp
import torch
import torch._dynamo.config
from taildropout import TailDropout, get_scale_param
import torch
from torch._dynamo.testing import CompileCounterWithBackend
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f'torch version {torch.__version__}')
print(f'Device: {DEVICE}')
def _check_routes(dropout: TailDropout, input_shape, requires_grad=False):
x = torch.ones(input_shape, requires_grad=requires_grad, device=DEVICE)
f = input_shape[dropout.dropout_dim]
# Assert shapes
dropout.train()
assert dropout(x).shape == x.shape
dropout.set_k(2)
assert dropout(x).shape == x.shape
dropout.eval()
assert dropout(x).shape == x.shape
dropout.set_k(2)
assert dropout(x).shape == x.shape
# Test values in train, eval, prune mode
dropout.eval()
y_all_eval = dropout(x)
dropout.set_k(2)
y_k_eval = dropout(x)
dropout.train()
dropout.set_k(f)
y_all_train = dropout(x)
dropout.set_k(2)
y_k_train = dropout(x)
torch.testing.assert_close(y_all_eval, y_all_train)
torch.testing.assert_close(y_k_eval, y_k_train)
assert y_all_eval.mean().allclose(torch.tensor(1.))
assert y_k_eval.mean().allclose(torch.tensor(2/f))
dropout.set_k(1)
assert dropout(x).mean().allclose(torch.tensor(1/f))
if dropout.dropout_dim==-1 or dropout.dropout_dim == len(input_shape):
# Assumes dropout dimension is the last dimension.
z = torch.randn_like(x)
# Assert values
dropout.set_k(2)
y = dropout(z)
torch.testing.assert_close(y[..., 2:], torch.zeros_like(y[..., 2:]))
torch.testing.assert_close(y[..., :2], z[..., :2])
if requires_grad:
# Think "y = x * mask"
# Deterministic
x.grad = None
dropout.set_k(2)
y = dropout(x)
y.sum().backward()
mask = x.grad.detach()
assert mask.equal(y.detach())
# Random
dropout.train()
x.grad = None
y = dropout(x)
y.sum().backward()
mask = x.grad.detach()
assert mask.equal(y.detach())
x.grad = None
def test_expected_mask():
n = 5
f = 7
_check_routes(dropout=TailDropout(), input_shape=(n, f)) # noqa
_check_routes(dropout=TailDropout(), input_shape=(n, 1, f)) # noqa
_check_routes(dropout=TailDropout(), input_shape=(n, n, f)) # noqa
_check_routes(dropout=TailDropout(dropout_dim=1), input_shape=(n, f))
_check_routes(dropout=TailDropout(dropout_dim=2), input_shape=(n, 1, f)) # noqa
_check_routes(dropout=TailDropout(dropout_dim=2), input_shape=(n, n, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=0, dropout_dim=-1), input_shape=(n, 1, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1), input_shape=(1, n, 1, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1), input_shape=(1, n, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1), input_shape=(n, 1, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1), input_shape=(n, n, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1, dropout_dim=-2), input_shape=(1, n, 1, f, 1)) # noqa
_check_routes(dropout=TailDropout(batch_dim=1, dropout_dim=3), input_shape=(1, n, 1, f, 1)) # noqa
_check_routes(dropout=TailDropout(batch_dim=[0, 1]), input_shape=(n, n, f)) # noqa
_check_routes(dropout=TailDropout(batch_dim=[1, 0]), input_shape=(n, n, f)) # noqa
# Test 0/1 probability
x = torch.ones([n,f], device=DEVICE)
torch.testing.assert_close(TailDropout(0)(x),x)
torch.testing.assert_close(TailDropout(1)(x),torch.zeros_like(x))
# Variable with grad
_check_routes(dropout=TailDropout(), input_shape=(n, f), requires_grad=True)
def test_multiple_batch_dim():
x = torch.ones(100, 100, 10, device=DEVICE)
y = TailDropout(batch_dim=0)(x).sum(-1).sum(0)
# Mask[i,a] == Mask[i,b] for all i, a, b
assert all((y == y[0]))
y = TailDropout(batch_dim=[0, 1])(x).sum(-1).sum(0)
# Mask[i,a] probably different from Mask[i,b] for some i, a, b
assert not all((y == y[0]))
def test_grad():
n = 2
k = 5
x = torch.ones(n, 1, 2, 3, k, requires_grad=True, device=DEVICE)
for dropout in [TailDropout(),
TailDropout(0),
TailDropout(1),
TailDropout(dropout_dim=4)]:
# Deterministic
dropout.set_k(2)
y = dropout(x)
y.sum().backward()
assert x.grad.detach().equal(y.detach())
# Random
dropout.train()
x.grad = None
y = dropout(x)
y.sum().backward()
assert x.grad.detach().equal(y.detach())
x.grad = None
def test_get_scale_param():
tol=1e-10
for p_expected in [0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
a = get_scale_param(p_expected,tol)
p_actual = a - a * exp(-1 / a) # int_0^1 S(x) dx
assert abs(p_expected-(1-p_actual))<tol
def test_dropoutprob():
# Integration test that dropout probability is correct up to errors from discretization.
torch.manual_seed(1)
n = 100000
for k in [10, 50, 100, 1000]:
epsilon = 2e-2
if k == 10:
epsilon = 5e-2
x = torch.ones(n, 2, k, device=DEVICE)
print('K', '\t', 'p', '\t', 'observed_p', '\t', 'err')
for p in [0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]:
dropout = TailDropout(p, batch_dim=[0, 1])
y = dropout(x)
observed_p = (1 - y).mean()
err = abs(observed_p - p)
print(f'{k}\t{p:.4f}\t{observed_p.item():.4f}\t{err.item():.4f}')
assert err < epsilon
def test_first_k():
x = torch.randn([2,3,4,10,5], device=DEVICE)
dropout_start = 6
expected = x.clone()
expected[:, :, :, dropout_start:] = 0
dropout=TailDropout(dropout_dim=3)
dropout.set_k(dropout_start)
actual = dropout(x)
assert actual.equal(expected)
def test_compilation_works():
torch.compiler.reset()
_check_routes(dropout = torch.compile(TailDropout()), input_shape=(10, 5, 3), requires_grad=False) # noqa
_check_routes(dropout = torch.compile(TailDropout()), input_shape=(10, 5, 3), requires_grad=True) # noqa
def test_compilation_works2():
# Failed on 2.2.2x when not disabling the k-forward call
torch.compiler.reset()
def _foo():
_model = torch.compile(TailDropout())
x = torch.randn([5,5]).to(DEVICE)
_model.set_k(3)
_model(x)
_foo()
_check_routes(dropout= torch.compile(TailDropout()), input_shape=(10, 5, 3), requires_grad=False) # noqa
_check_routes(dropout= torch.compile(TailDropout()), input_shape=(10, 5, 3), requires_grad=True) # noqa
def test_compilation_equality_k():
torch.compiler.reset()
x = torch.ones([5,5]).to(DEVICE)
model_orig = TailDropout()
model_compiled = torch.compile(TailDropout())
model_orig.set_k(3)
model_compiled.set_k(3)
torch.testing.assert_close(model_orig(x), model_compiled(x))
torch.testing.assert_close(model_orig(x), model_compiled(x))
def test_recompilation():
torch.compiler.reset()
# torch._dynamo.config.verify_correctness = True # Wont' work due to randomness
torch._logging.set_logs(
# dynamo=logging.DEBUG,
recompiles=True,
# recompiles_verbose=True,
# perf_hints=True
)
compile_counter = CompileCounterWithBackend("inductor")
# Check equality in forward pass
# model_uncompiled = TailDropout()
model = torch.compile(TailDropout(), backend=compile_counter)
# Measure how many new graphs got compiled. Use "<=" to cover multiple torch versions + GPU
# Forward pass - no grad
_check_routes(dropout=model, input_shape=(10, 5, 3), requires_grad=False) # noqa
assert len(compile_counter.graphs) <= 2
# Repeated calls
for _ in range(5):
_check_routes(dropout=model, input_shape=(10, 5, 3), requires_grad=False) # noqa
assert len(compile_counter.graphs) <= 3
# Forward + Backward pass
for _ in range(5):
_check_routes(dropout=model, input_shape=(10, 5, 3), requires_grad=True) # noqa
assert len(compile_counter.graphs) <= 3
# Forward + Backward pass - Prime @ train
model.train()
model(torch.ones((10, 5, 3)).to(DEVICE))
for _ in range(5):
_check_routes(dropout=model, input_shape=(10, 5, 3), requires_grad=True) # noqa
assert len(compile_counter.graphs) <= 3
# Forward + Backward pass - Prime @ eval
model = torch.compile(TailDropout(), backend=compile_counter)
model.eval()
model(torch.ones((10, 5, 3)).to(DEVICE))
for _ in range(5):
_check_routes(dropout=model, input_shape=(10, 5, 3), requires_grad=True) # noqa
assert len(compile_counter.graphs) <= 3
def test_compilation_set_k(): # FAILS
torch.compiler.reset()
torch._dynamo.config.cache_size_limit = 1000 # Trick to not err out on recompile
# torch._dynamo.config.verify_correctness = True # Fails with torch >2.2
torch._logging.set_logs(
# dynamo=logging.DEBUG,
recompiles=True,
# recompiles_verbose=True,
# perf_hints=True
)
f = 16
x = torch.ones(1, f, device = DEVICE, requires_grad=False)
compile_counter = CompileCounterWithBackend("inductor")
model = TailDropout()
model = model.to(DEVICE)
model = torch.compile(model, backend=compile_counter)
with torch.no_grad():
for k in range(f+1):
# for _name, module in model.named_modules():
# if isinstance(module, TailDropout):
# module.set_k(k)
model.set_k(k)
y = model(x)
assert y.sum()==k,(y,k)
assert len(compile_counter.graphs) <= f
# print('test_expected_mask',test_expected_mask())
# print('test_multiple_batch_dim',test_multiple_batch_dim())
# print('test_grad',test_grad())
# print("test_get_scale_param",test_get_scale_param())
# print('test_dropoutprob',test_dropoutprob())
# print('test_first_k',test_first_k())
# print('test_compilation',test_compilation())
# print('test_compilation_set_k',test_compilation_set_k())