forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConvolutionMM2d.cpp
750 lines (666 loc) · 23.8 KB
/
ConvolutionMM2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorUtils.h>
#include <ATen/div_rtn.h>
#include <ATen/native/ConvUtils.h>
#include <ATen/native/CPUBlas.h>
#include <ATen/native/Unfold2d.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_slow_conv2d_backward_native.h>
#include <ATen/ops/_slow_conv2d_forward.h>
#include <ATen/ops/_slow_conv2d_forward_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/sum.h>
#include <ATen/ops/thnn_conv2d_native.h>
#endif
namespace at::native {
namespace {
static Tensor compute_columns2d(
const Tensor& input,
IntArrayRef padding,
IntArrayRef stride,
IntArrayRef kernel_size,
bool is_channels_last) {
const int64_t kernel_height = kernel_size[0];
const int64_t kernel_width = kernel_size[1];
const int64_t pad_height = padding[0];
const int64_t pad_width = padding[1];
const int64_t stride_height = stride[0];
const int64_t stride_width = stride[1];
const int64_t batch_size = input.size(0);
const int64_t n_input_plane = input.size(1);
const int64_t input_height = input.size(2);
const int64_t input_width = input.size(3);
const int64_t output_height = (input_height + 2 * pad_height - kernel_height) / stride_height + 1;
const int64_t output_width = (input_width + 2 * pad_width - kernel_width) / stride_width + 1;
Tensor columns;
if ((kernel_height == 1) && (stride_height == 1) && (pad_height == 0) &&
(kernel_width == 1) && (stride_width == 1) && (pad_width == 0)) {
// Columns are just a view on the input for the 1x1 kernel special case.
if (is_channels_last) {
columns = input.as_strided({batch_size, output_height * output_width, n_input_plane},
{output_height * output_width * n_input_plane, n_input_plane, 1}).detach();
} else {
columns = input.view({batch_size, n_input_plane, output_height * output_width}).detach();
}
} else {
int64_t row = is_channels_last ?
output_height * output_width : n_input_plane * kernel_height * kernel_width;
int64_t col = is_channels_last ?
kernel_height * kernel_width * n_input_plane : output_height * output_width;
columns = at::empty({batch_size, row, col}, input.options());
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "slow_conv2d_cpu", [&]{
auto input_a = input.accessor<const scalar_t, 4>();
auto columns_a = columns.accessor<scalar_t, 3>();
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (const auto t : c10::irange(start, end)) {
auto input_t = input_a[t];
auto columns_t = columns_a[t];
unfolded2d_copy_stub(
kCPU,
c10::CppTypeToScalarType<scalar_t>::value,
columns_t.data(),
input_t.data(),
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
n_input_plane,
input_height,
input_width,
output_height,
output_width,
is_channels_last);
}
});
});
}
return columns.contiguous();
}
static inline void slow_conv2d_shape_check(
const Tensor& input,
const Tensor& grad_output,
const Tensor& weight,
const Tensor& bias,
int64_t kernel_height,
int64_t kernel_width,
int64_t stride_height,
int64_t stride_width,
int64_t pad_height,
int64_t pad_width,
bool weight_optional) {
TORCH_CHECK(
kernel_width > 0 && kernel_height > 0,
"kernel size should be greater than zero, but got kernel_height: ",
kernel_height,
" kernel_width: ",
kernel_width);
TORCH_CHECK(
stride_width > 0 && stride_height > 0,
"stride should be greater than zero, but got stride_height: ",
stride_height,
" stride_width: ",
stride_width);
if (weight.defined()) {
TORCH_CHECK(
weight.numel() > 0 && (weight.dim() == 2 || weight.dim() == 4),
"non-empty 2D or 4D weight tensor expected, but got: ",
weight.sizes());
if (bias.defined()) {
check_dim_size(bias, 1, 0, weight.size(0));
}
} else {
TORCH_CHECK(weight_optional, "weight tensor is undefined");
}
const int64_t ndim = input.dim();
const int64_t dim_planes = 1;
const int64_t dim_height = 2;
const int64_t dim_width = 3;
// Allow for empty batch size and channel size but not other dimensions
TORCH_CHECK(ndim == 4, "Expected 4D input tensor, but got: ", input.sizes());
for (const auto dim : c10::irange(2, ndim)) {
TORCH_CHECK(input.size(dim) != 0,
"Expected non-zero size for input dimension ", dim,
", but got input shape: ", input.sizes(), ". Only the batch and channel dimensions support size 0.");
}
const int64_t input_height = input.size(dim_height);
const int64_t input_width = input.size(dim_width);
const int64_t exact_input_height = input_height + 2 * pad_height;
const int64_t exact_input_width = input_width + 2 * pad_width;
TORCH_CHECK(
exact_input_height >= kernel_height && exact_input_width >= kernel_width,
"Calculated padded input size per channel: (",
exact_input_height,
" x ",
exact_input_width,
"). ",
"Kernel size: (",
kernel_height,
" x ",
kernel_width,
"). Kernel size can't be greater than actual input size");
const int64_t output_height =
div_rtn<int64_t>(exact_input_height - kernel_height, stride_height) + 1;
const int64_t output_width =
div_rtn<int64_t>(exact_input_width - kernel_width, stride_width) + 1;
TORCH_CHECK(
output_width >= 1 && output_height >= 1,
"Given input size per channel: (",
input_height,
" x ",
input_width,
"). "
"Calculated output size per channel: (",
output_height,
" x ",
output_width,
"). Output size is too small");
if (weight.defined()) {
int64_t n_input_plane = weight.size(1);
if (weight.dim() == 2) {
n_input_plane /= (kernel_height * kernel_width);
}
if (input.size(1) != 0) {
check_dim_size(input, ndim, dim_planes, n_input_plane);
}
}
if (grad_output.defined()) {
if (weight.defined()) {
int64_t n_output_plane = weight.size(0);
check_dim_size(grad_output, ndim, dim_planes, n_output_plane);
} else if (bias.defined()) {
TORCH_CHECK(bias.numel() > 0, "non-empty bias tensor expected");
const int64_t n_output_plane = bias.dim() == 0 ? 1 : bias.size(0);
check_dim_size(grad_output, ndim, dim_planes, n_output_plane);
}
check_dim_size(grad_output, ndim, dim_height, output_height);
check_dim_size(grad_output, ndim, dim_width, output_width);
}
}
static inline Tensor view_weight_2d(const Tensor& weight_,
at::MemoryFormat memory_format = at::MemoryFormat::Contiguous) {
Tensor weight = weight_.contiguous(memory_format);
if (weight.dim() == 4) {
const int64_t s1 = weight.size(0);
const int64_t s2 = weight.size(1) * weight.size(2) * weight.size(3);
return memory_format == at::MemoryFormat::ChannelsLast
? weight.as_strided({s1, s2}, {s2, 1}) // CL: view as {oc, kh*kw*ic}
: weight.view({s1, s2}); // CF: view as {oc, ic*kh*kw}
} else {
return weight;
}
}
template <typename scalar_t>
static void slow_conv2d_update_output_frame(
TensorAccessor<const scalar_t, 3> input,
TensorAccessor<scalar_t, 3> output,
TensorAccessor<const scalar_t, 2> weight,
bool has_bias,
TensorAccessor<scalar_t, 2> finput,
int64_t kernel_height,
int64_t kernel_width,
int64_t stride_height,
int64_t stride_width,
int64_t pad_height,
int64_t pad_width,
int64_t n_input_plane,
int64_t input_height,
int64_t input_width,
int64_t n_output_plane,
int64_t output_height,
int64_t output_width,
bool is_channels_last) {
const int beta = has_bias ? 1 : 0;
// Compute out = weight * input
// Note gemm expects fortran order, so all 3 matrices are transposed.
// Swapping argument order cancels this, since C == AB <=> T(C) == T(B)T(A)
if (is_channels_last) {
const int64_t m = n_output_plane;
const int64_t n = output_height * output_width;
const int64_t k = n_input_plane * kernel_height * kernel_width;
const int64_t lda = k;
const int64_t ldb = k;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::Transpose,
TransposeType::NoTranspose,
m, n, k,
static_cast<scalar_t>(1),
weight.data(), lda,
finput.data(), ldb,
static_cast<scalar_t>(beta),
output.data(), ldc);
} else {
const int64_t m = output_height * output_width;
const int64_t n = n_output_plane;
const int64_t k = n_input_plane * kernel_height * kernel_width;
const int64_t lda = m;
const int64_t ldb = k;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::NoTranspose,
TransposeType::NoTranspose,
m, n, k,
static_cast<scalar_t>(1),
finput.data(), lda,
weight.data(), ldb,
static_cast<scalar_t>(beta),
output.data(), ldc);
}
}
template <typename scalar_t>
void slow_conv2d_backward_update_grad_input_frame(
TensorAccessor<scalar_t, 3> grad_input,
TensorAccessor<const scalar_t, 3> grad_output,
TensorAccessor<const scalar_t, 2> weight,
scalar_t *fgrad_input,
int64_t kernel_height,
int64_t kernel_width,
int64_t stride_height,
int64_t stride_width,
int64_t pad_height,
int64_t pad_width,
bool is_channels_last) {
// Compute fgrad_input = weight.T * grad_output.reshape({grad_output.shape(0), -1})
// Note gemm expects fortran order, so all 3 matrices are transposed.
// Swapping argument order cancels this, since C == AB <=> T(C) == T(B)T(A)
if (is_channels_last) {
const int64_t m = weight.size(1);
const int64_t n = grad_output.size(1) * grad_output.size(2);
const int64_t k = weight.size(0);
const int64_t lda = m;
const int64_t ldb = k;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::NoTranspose,
TransposeType::NoTranspose,
m, n, k,
static_cast<scalar_t>(1),
weight.data(), lda,
grad_output.data(), ldb,
static_cast<scalar_t>(0),
fgrad_input, ldc);
} else {
const int64_t m = grad_output.size(1) * grad_output.size(2);
const int64_t n = weight.size(1);
const int64_t k = weight.size(0);
const int64_t lda = m;
const int64_t ldb = n;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::NoTranspose,
TransposeType::Transpose,
m, n, k,
static_cast<scalar_t>(1),
grad_output.data(), lda,
weight.data(), ldb,
static_cast<scalar_t>(0),
fgrad_input, ldc);
}
unfolded2d_acc_stub(
kCPU,
c10::CppTypeToScalarType<scalar_t>::value,
fgrad_input,
grad_input.data(),
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
grad_input.size(0),
grad_input.size(1),
grad_input.size(2),
grad_output.size(1),
grad_output.size(2),
is_channels_last);
}
void slow_conv2d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output_,
const Tensor& input_,
const Tensor& weight_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding) {
const int64_t kernel_height = kernel_size[0];
const int64_t kernel_width = kernel_size[1];
const int64_t pad_height = padding[0];
const int64_t pad_width = padding[1];
const int64_t stride_height = stride[0];
const int64_t stride_width = stride[1];
bool use_channels_last = thnn_conv_use_channels_last(input_, weight_);
auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous;
const Tensor weight = view_weight_2d(weight_, memory_format);
slow_conv2d_shape_check(
input_,
grad_output_,
weight,
Tensor(),
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
false);
const Tensor input = input_.contiguous(memory_format);
// Compute shape of columnized data excluding batch dim.
const int64_t batch_size = input.size(0);
const int64_t n_input_plane = input.size(1);
const int64_t input_height = input.size(2);
const int64_t input_width = input.size(3);
const int64_t output_height = (input_height + 2 * pad_height - kernel_height) / stride_height + 1;
const int64_t output_width = (input_width + 2 * pad_width - kernel_width) / stride_width + 1;
const int64_t fgrad_input_size = n_input_plane * kernel_height * kernel_width * output_height * output_width;
const Tensor grad_output = grad_output_.contiguous(memory_format);
grad_input.resize_as_(input, memory_format);
grad_input.zero_();
TORCH_CHECK(grad_input.is_contiguous(memory_format), "slow_conv2d: grad_input must be contiguous");
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16, kHalf, input.scalar_type(), "slow_conv2d_cpu_grad_input", [&] {
auto grad_output_a = grad_output.accessor<const scalar_t, 4>();
auto grad_input_a = grad_input.accessor<scalar_t, 4>();
auto weight_a = weight.accessor<const scalar_t, 2>();
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
auto fgrad_input = std::make_unique<scalar_t[]>(fgrad_input_size);
for (const auto t : c10::irange(start, end)) {
auto grad_input_t = grad_input_a[t];
auto grad_output_t = grad_output_a[t];
slow_conv2d_backward_update_grad_input_frame(
grad_input_t,
grad_output_t,
weight_a,
fgrad_input.get(),
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
use_channels_last);
}
});
});
}
template <typename scalar_t>
void slow_conv2d_backward_weight_frame(
TensorAccessor<scalar_t, 2> grad_weight,
TensorAccessor<const scalar_t, 3> grad_output,
TensorAccessor<const scalar_t, 2> finput,
bool is_channels_last) {
// Compute grad_weight += grad_output.reshape({grad_output.shape(0), -1}) * finput.T
// Note gemm expects fortran order, so all 3 matrices are transposed.
// Swapping argument order cancels this, since C == AB <=> T(C) == T(B)T(A)
if (is_channels_last) {
const int64_t m = finput.size(1);
const int64_t n = grad_output.size(0);
const int64_t k = grad_output.size(1) * grad_output.size(2);
const int64_t lda = m;
const int64_t ldb = n;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::NoTranspose,
TransposeType::Transpose,
m, n, k,
static_cast<scalar_t>(1),
finput.data(), lda,
grad_output.data(), ldb,
static_cast<scalar_t>(1),
grad_weight.data(), ldc);
} else {
const int64_t m = finput.size(0);
const int64_t n = grad_output.size(0);
const int64_t k = grad_output.size(1) * grad_output.size(2);
const int64_t lda = k;
const int64_t ldb = k;
const int64_t ldc = m;
at::native::cpublas::gemm(
TransposeType::Transpose,
TransposeType::NoTranspose,
m, n, k,
static_cast<scalar_t>(1),
finput.data(), lda,
grad_output.data(), ldb,
static_cast<scalar_t>(1),
grad_weight.data(), ldc);
}
}
static void slow_conv2d_backward_weight_out_cpu_template(
Tensor& grad_weight,
const Tensor& input,
const Tensor& grad_output_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding) {
const int64_t kernel_height = kernel_size[0];
const int64_t kernel_width = kernel_size[1];
const int64_t pad_height = padding[0];
const int64_t pad_width = padding[1];
const int64_t stride_height = stride[0];
const int64_t stride_width = stride[1];
bool use_channels_last = thnn_conv_use_channels_last(input, grad_weight);
auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous;
TORCH_CHECK(grad_weight.is_contiguous(memory_format), "slow_conv2d: grad_weight must be contiguous");
Tensor grad_weight_2d = view_weight_2d(grad_weight, memory_format);
slow_conv2d_shape_check(
input,
grad_output_,
grad_weight_2d,
{},
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
true);
auto grad_output = grad_output_.contiguous(memory_format);
Tensor finput = compute_columns2d(input, padding, stride, kernel_size, use_channels_last);
const int64_t batch_size = input.size(0);
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16, kHalf, input.scalar_type(), "slow_conv2d_cpu_grad_weight", [&] {
auto grad_output_a = grad_output.accessor<const scalar_t, 4>();
auto grad_weight_2d_a = grad_weight_2d.accessor<scalar_t, 2>();
auto finput_a = finput.accessor<const scalar_t, 3>();
for (const auto t : c10::irange(batch_size)) {
auto grad_output_t = grad_output_a[t];
auto finput_t = finput_a[t];
slow_conv2d_backward_weight_frame(
grad_weight_2d_a, grad_output_t, finput_t, use_channels_last);
}
});
}
} // namespace
Tensor& slow_conv2d_forward_out_cpu(
const Tensor& self,
const Tensor& weight_,
IntArrayRef kernel_size, const std::optional<Tensor>& bias_opt,
IntArrayRef stride,
IntArrayRef padding,
Tensor& output) {
// See [Note: hacky wrapper removal for optional tensor]
TORCH_CHECK(kernel_size.size() == 2, "2D kernel_size expected");
TORCH_CHECK(stride.size() == 2, "2D stride expected");
TORCH_CHECK(padding.size() == 2, "2D padding expected");
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
const int64_t kernel_height = kernel_size[0];
const int64_t kernel_width = kernel_size[1];
const int64_t pad_height = padding[0];
const int64_t pad_width = padding[1];
const int64_t stride_height = stride[0];
const int64_t stride_width = stride[1];
bool use_channels_last = thnn_conv_use_channels_last(self, weight_);
auto memory_format = use_channels_last ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::Contiguous;
const Tensor weight_2d = view_weight_2d(weight_, memory_format);
slow_conv2d_shape_check(
self,
Tensor(),
weight_2d,
bias,
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
false);
const Tensor input = self.contiguous(memory_format);
const int64_t batch_size = input.size(0);
const int64_t n_input_plane = input.size(1);
const int64_t input_height = input.size(2);
const int64_t input_width = input.size(3);
const int64_t n_output_plane = weight_2d.size(0);
const int64_t output_height = (input_height + 2 * pad_height - kernel_height) / stride_height + 1;
const int64_t output_width = (input_width + 2 * pad_width - kernel_width) / stride_width + 1;
Tensor finput = compute_columns2d(input, padding, stride, kernel_size, use_channels_last);
output.resize_({batch_size, n_output_plane, output_height, output_width}, memory_format);
if (bias.defined()) {
output.copy_(bias.reshape({-1, 1, 1}));
}
TORCH_CHECK(output.is_contiguous(memory_format), "slow_conv2d output tensor must be contiguous");
AT_DISPATCH_ALL_TYPES_AND2(kBFloat16, kHalf, input.scalar_type(), "slow_conv2d_cpu", [&]{
auto input_a = input.accessor<const scalar_t, 4>();
auto output_a = output.accessor<scalar_t, 4>();
auto finput_a = finput.accessor<scalar_t, 3>();
auto weight_2d_a = weight_2d.accessor<const scalar_t, 2>();
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (const auto t : c10::irange(start, end)) {
auto input_t = input_a[t];
auto output_t = output_a[t];
auto finput_t = finput_a[t];
slow_conv2d_update_output_frame(
input_t,
output_t,
weight_2d_a,
bias.defined(),
finput_t,
kernel_height,
kernel_width,
stride_height,
stride_width,
pad_height,
pad_width,
n_input_plane,
input_height,
input_width,
n_output_plane,
output_height,
output_width,
use_channels_last);
}
});
});
return output;
}
Tensor slow_conv2d_forward_cpu(
const Tensor& self,
const Tensor& weight,
IntArrayRef kernel_size, const std::optional<Tensor>& bias_opt,
IntArrayRef stride,
IntArrayRef padding) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
auto output = at::empty({0}, self.options());
at::native::slow_conv2d_forward_out_cpu(
self,
weight,
kernel_size,
bias,
stride,
padding,
output);
return output;
}
std::tuple<Tensor&, Tensor&, Tensor&> slow_conv2d_backward_out_cpu(
const Tensor& grad_output,
const Tensor& self,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
Tensor& grad_input,
Tensor& grad_weight,
Tensor& grad_bias) {
if (grad_input.defined()) {
slow_conv2d_backward_out_cpu_template(
grad_input,
grad_output,
self,
weight,
kernel_size,
stride,
padding);
}
if (grad_bias.defined()) {
at::sum_out(grad_bias, grad_output, IntArrayRef{0, 2, 3});
}
if (grad_weight.defined()) {
grad_weight.resize_(weight.sizes(), weight.suggest_memory_format());
grad_weight.zero_();
slow_conv2d_backward_weight_out_cpu_template(
grad_weight,
self,
grad_output,
kernel_size,
stride,
padding);
}
return std::tuple<Tensor&, Tensor&, Tensor&>(
grad_input, grad_weight, grad_bias);
}
std::tuple<Tensor, Tensor, Tensor> slow_conv2d_backward_cpu(
const Tensor& grad_output,
const Tensor& self,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
std::array<bool, 3> output_mask) {
Tensor grad_input;
Tensor grad_weight;
Tensor grad_bias;
if (output_mask[0]) {
grad_input = at::empty({0}, grad_output.options());
}
if (output_mask[1]) {
grad_weight = at::empty({0}, grad_output.options());
}
if (output_mask[2]) {
grad_bias = at::empty({0}, grad_output.options());
}
at::native::slow_conv2d_backward_out_cpu(
grad_output,
self,
weight,
kernel_size,
stride,
padding,
grad_input,
grad_weight,
grad_bias);
return std::make_tuple(grad_input, grad_weight, grad_bias);
}
Tensor & thnn_conv2d_out(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const std::optional<Tensor>& bias_opt, IntArrayRef stride, IntArrayRef padding, Tensor & output) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
return at::_slow_conv2d_forward_out(output, self, weight, kernel_size, bias, stride, padding);
}
Tensor thnn_conv2d(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const std::optional<Tensor>& bias_opt, IntArrayRef stride, IntArrayRef padding) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
return at::_slow_conv2d_forward(self, weight, kernel_size, bias, stride, padding);
}
} // namespace at::native