forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ForeachTernaryOp.cu
159 lines (143 loc) · 4.87 KB
/
ForeachTernaryOp.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/Lerp.h>
#include <ATen/native/cuda/ForeachFunctors.cuh>
#include <ATen/native/cuda/MultiTensorApply.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_foreach_lerp_native.h>
#include <ATen/ops/empty_like_native.h>
#endif
namespace at::native {
template <typename T>
struct LerpFunctor {
inline C10_DEVICE T operator()(const T self, const T end, const T weight) {
return lerp(self, end, weight);
}
};
std::vector<at::Tensor> foreach_tensor_lerp_ternary_cuda(
TensorList tensors1,
TensorList tensors2,
TensorList tensors3) {
check_foreach_api_restrictions(tensors1, tensors2, tensors3);
if (!can_use_fast_route({tensors1, tensors2, tensors3}, {}, true)) {
return foreach_tensor_ternary_lerp_slow(tensors1, tensors2, tensors3);
}
std::vector<at::Tensor> vec_res;
vec_res.reserve(tensors1.size());
for (const auto& t : tensors1) {
vec_res.emplace_back(at::native::empty_like(t));
}
std::vector<std::vector<at::Tensor>> tensor_lists{
tensors1.vec(), tensors2.vec(), tensors3.vec(), vec_res};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
tensors1[0].scalar_type(),
"foreach_tensor_lerp_ternary_cuda",
[&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<4>(
tensor_lists,
TernaryOpListFunctor<
scalar_t,
/* depth */ 4,
/* r_args_depth */ 3,
/* res_arg_index */ 3>(),
LerpFunctor<opmath_t>());
});
return tensor_lists[3];
}
void foreach_tensor_lerp_ternary_cuda_(
TensorList tensors1,
TensorList tensors2,
TensorList tensors3) {
check_foreach_api_restrictions(tensors1, tensors2, tensors3);
if (!can_use_fast_route({tensors1, tensors2, tensors3}, {}, true)) {
return foreach_tensor_ternary_lerp_slow_(tensors1, tensors2, tensors3);
}
std::vector<std::vector<at::Tensor>> tensor_lists{
tensors1.vec(), tensors2.vec(), tensors3.vec()};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
tensors1[0].scalar_type(),
"foreach_tensor_lerp_ternary_cuda_",
[&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<3>(
tensor_lists,
TernaryOpListFunctor<
scalar_t,
/* depth */ 3,
/* r_args_depth */ 3,
/* res_arg_index */ 0>(),
LerpFunctor<opmath_t>());
});
increment_version(tensors1);
}
std::vector<at::Tensor> foreach_tensor_lerp_list_cuda(
TensorList tensors1,
TensorList tensors2,
const Scalar& weight) {
check_foreach_api_restrictions(tensors1, tensors2);
if (!can_use_fast_route({tensors1, tensors2}, {}, true)) {
return foreach_tensor_lerp_list_kernel_slow(tensors1, tensors2, weight);
}
std::vector<at::Tensor> vec_res;
vec_res.reserve(tensors1.size());
for (const auto& t : tensors1) {
vec_res.emplace_back(at::native::empty_like(t));
}
std::vector<std::vector<at::Tensor>> tensor_lists{
tensors1.vec(), tensors2.vec(), vec_res};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
tensors1[0].scalar_type(),
"foreach_tensor_lerp_scalar_cuda",
[&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<3>(
tensor_lists,
TernaryOpScalarFunctor<
scalar_t,
/* depth */ 3,
/* r_args_depth */ 2,
/* res_arg_index */ 2>(),
LerpFunctor<opmath_t>(),
weight.to<opmath_t>());
});
return tensor_lists[2];
}
void foreach_tensor_lerp_list_cuda_(
TensorList tensors1,
TensorList tensors2,
const Scalar& weight) {
check_foreach_api_restrictions(tensors1, tensors2);
if (!can_use_fast_route({tensors1, tensors2}, {}, true)) {
return foreach_tensor_lerp_list_kernel_slow_(tensors1, tensors2, weight);
}
std::vector<std::vector<at::Tensor>> tensor_lists{
tensors1.vec(), tensors2.vec()};
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
tensors1[0].scalar_type(),
"foreach_tensor_lerp_scalar_cuda_",
[&]() {
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<2>(
tensor_lists,
TernaryOpScalarFunctor<
scalar_t,
/* depth */ 2,
/* r_args_depth */ 2,
/* res_arg_index */ 0>(),
LerpFunctor<opmath_t>(),
weight.to<opmath_t>());
});
}
} // namespace at::native