-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPairsPlot.py
135 lines (122 loc) · 5.23 KB
/
PairsPlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from bs.operations import base
from bbcflib.bFlatMajor.common import sorted_stream
from bbcflib.bFlatMajor.stream import neighborhood, score_by_feature
from bbcflib.bFlatMajor.numeric import score_array, correlation
from bbcflib.bFlatMajor.figure import pairs
from bbcflib.btrack import track
from bbcflib import genrep
from numpy import vstack
import array
ftypes = [(0, 'gene bodies'), (1, 'gene promoters'), (2, 'custom upload')]
prom_up_def = 1000
prom_down_def = 100
plot_types = [(0, 'correlations'), (1, 'density plots')]
cormax = 500
import tw2.forms as twf
import tw2.core as twc
import tw2.dynforms as twd
class PairsPlotForm(base.BaseForm):
signal = base.MultipleFileField(label='Signal: ',
help_text='Select signal files (e.g. bedgraph)',
validator=twf.FileValidator(required=True))
mode = twf.SingleSelectField(label='Plot type: ',
options=plot_types,
prompt_text=None,
validator=twc.Validator(required=True))
child = twd.HidingTableLayout()
feature_type = twd.HidingSingleSelectField(label='Feature type: ',
options=ftypes, prompt_text=None,
mapping={ftypes[-1][0]: ['features'],
1: ['upstream', 'downstream']},
help_text='Choose a feature set or upload your own',
validator=twc.Validator(required=True))
features = twf.SingleSelectField(label='Custom feature set: ',
help_text='Select a feature file (e.g. bed)',
validator=twf.FileValidator())
assembly = twf.SingleSelectField(label='Assembly: ',
options=genrep.GenRep().assemblies_available(),
help_text='Reference genome')
upstream = twf.TextField(label='Promoter upstream distance: ',
validator=twc.IntValidator(required=True),
value=prom_up_def,
help_text='Size of promoter upstream of TSS')
downstream = twf.TextField(label='Promoter downstream distance: ',
validator=twc.IntValidator(required=True),
value=prom_down_def,
help_text='Size of promoter downstream of TSS')
submit = twf.SubmitButton(id="submit", value="Plot")
meta = {'version': "1.0.0",
'author': "BBCF",
'contact': "[email protected]"}
in_parameters = [{'id': 'signal', 'type': 'track', 'required': True, 'multiple': True},
{'id': 'mode', 'type': 'list', 'required': True},
{'id': 'features', 'type': 'track', 'required': False},
{'id': 'upstream', 'type': 'int', 'required': True},
{'id': 'downstream', 'type': 'int', 'required': True},
{'id': 'feature_type', 'type': 'list'},
]
out_parameters = [{'id': 'plot_pairs', 'type': 'pdf'}]
class PairsPlotPlugin(base.OperationPlugin):
info = {
'title': 'Pairwise plots',
'description': 'Plots pairwise comparisons between signal tracks',
'path': ['Plot', 'Plot pairs'],
'output': PairsPlotForm,
'in': in_parameters,
'out': out_parameters,
'meta': meta,
}
def __call__(self, **kw):
feature_type = int(kw.get('feature_type') or 0)
assembly_id = kw.get('assembly') or None
chrmeta = "guess"
if assembly_id:
assembly = genrep.Assembly(assembly_id)
chrmeta = assembly.chrmeta
genes = assembly.gene_track
elif not(feature_type == 2):
raise ValueError("Please specify an assembly")
signals = [track(sig, chrmeta=chrmeta) for sig in kw.get('signal', [])]
if feature_type == 0:
features = genes
elif feature_type == 1:
prom_pars = {'before_start': int(kw.get('upstream') or prom_up_def),
'after_start': int(kw.get('downstream') or prom_down_def),
'on_strand': True}
features = lambda c: neighborhood(genes(c), **prom_pars)
elif feature_type == 2:
_t = track(kw.get('features'), chrmeta=chrmeta)
chrmeta = _t.chrmeta
features = _t.read
else:
raise ValueError("Feature type not known: %i" % feature_type)
pdf = self.temporary_path(fname='plot_pairs.pdf')
narr = None
if int(kw['mode']) == 0:
xarr = array(range(-cormax, cormax + 1))
srtdchrom = sorted(chrmeta.keys())
features = [x[:3] for chrom in srtdchrom
for x in sorted_stream(features(chrom))]
_f = ['chr', 'start', 'end', 'score']
narr = correlation([s.read(fields=_f) for s in signals],
features, (-cormax, cormax), True)
elif int(kw['mode']) == 1:
xarr = None
for chrom in chrmeta:
feat = features(chrom)
means = score_by_feature([s.read(chrom) for s in signals], feat)
mf = means.fields[len(feat.fields):]
_n, _l = score_array(means, mf)
if _n.size == 0:
continue
if narr is None:
narr = _n
else:
narr = vstack((narr, _n))
else:
raise ValueError("Mode not implemented: %s" % kw['mode'])
if narr is None:
raise ValueError("No data")
pairs(narr, xarr, output=pdf)
self.new_file(pdf, 'plot_pairs')
return 1