-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
89 lines (69 loc) · 2.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
def print_stats2(the_y,name):
indices = np.where(the_y != 0.0)[1]
print(name+" indices=",indices)
print(name," != 0.0", the_y[0][indices] )
print(name+" indices", indices.shape )
def iou(lx1,ly1,rx1,ry1,lx2,ly2,rx2,ry2):
# sum of areas
xL = max(lx1,lx2)
yL = max(ly1,ly2)
xR = min(rx1,rx2)
yR = min(ry1,ry2)
intersection = 0
if xR < xL or yR < yL:
intersection = 0
else:
intersection = (xR - xL) * (yR - yL)
union = (rx1-lx1)*(ry1-ly1) * 1.0 + (rx2-lx2)*(ry2-ly2)*1.0 - 1.0*intersection
if(intersection*1.0/union > 0.3):
print(" dbox=",lx1,ly1,rx1,ry1,"gt=",lx2,ly2,rx2,ry2);
print(" intersection = ",intersection,"Union=",union,"IOUU=",intersection*1.0/union)
return intersection*1.0/union
# Malisiewicz et al.
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
boxes = np.array(boxes, dtype=np.float32)
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick].astype("int")