forked from Heonozis/FaceShifter-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_aei.py
151 lines (116 loc) · 4.57 KB
/
train_aei.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from network.MultiScaleDiscriminator import *
from torch.utils.data import DataLoader
from face_modules.model import Backbone
from utils.Dataset import FaceEmbed
import torch.nn.functional as F
import torch.optim as optim
from network.aei import *
from apex import amp
import torchvision
import visdom
import torch
import time
import cv2
vis = visdom.Visdom(server='127.0.0.1', env='faceshifter', port=8097)
batch_size = 16
lr_G = 4e-4
lr_D = 4e-4
max_epoch = 2000
show_step = 10
save_epoch = 1
model_save_path = './saved_models/'
optim_level = 'O1'
device = torch.device('cuda')
G = AEI_Net(c_id=512).to(device)
D = MultiscaleDiscriminator(input_nc=3, n_layers=6, norm_layer=torch.nn.InstanceNorm2d).to(device)
G.train()
D.train()
arcface = Backbone(50, 0.6, 'ir_se').to(device)
arcface.eval()
arcface.load_state_dict(torch.load('./saved_models/model_ir_se50.pth', map_location=device), strict=False)
opt_G = optim.Adam(G.parameters(), lr=lr_G, betas=(0, 0.999))
opt_D = optim.Adam(D.parameters(), lr=lr_D, betas=(0, 0.999))
G, opt_G = amp.initialize(G, opt_G, opt_level=optim_level)
D, opt_D = amp.initialize(D, opt_D, opt_level=optim_level)
try:
G.load_state_dict(torch.load('./saved_models/G_latest.pth', map_location=torch.device('cpu')), strict=False)
D.load_state_dict(torch.load('./saved_models/D_latest.pth', map_location=torch.device('cpu')), strict=False)
except Exception as e:
print(e)
dataset = FaceEmbed(['../celeba_64/'], same_prob=0.8)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0, drop_last=True)
MSE = torch.nn.MSELoss()
L1 = torch.nn.L1Loss()
def hinge_loss(X, positive=True):
if positive:
return torch.relu(1-X).mean()
else:
return torch.relu(X+1).mean()
def get_grid_image(X):
X = X[:8]
X = torchvision.utils.make_grid(X.detach().cpu(), nrow=X.shape[0]) * 0.5 + 0.5
return X
def make_image(Xs, Xt, Y):
Xs = get_grid_image(Xs)
Xt = get_grid_image(Xt)
Y = get_grid_image(Y)
return torch.cat((Xs, Xt, Y), dim=1).numpy()
print(torch.backends.cudnn.benchmark)
for epoch in range(0, max_epoch):
for iteration, data in enumerate(dataloader):
start_time = time.time()
Xs, Xt, same_person = data
Xs = Xs.to(device)
Xt = Xt.to(device)
with torch.no_grad():
embed, Xs_feats = arcface(F.interpolate(Xs, [112, 112], mode='bilinear', align_corners=True))
same_person = same_person.to(device)
# train G
opt_G.zero_grad()
Y, Xt_attr = G(Xt, embed)
Di = D(Y)
L_adv = 0
for di in Di:
L_adv += hinge_loss(di[0], True)
Y_aligned = Y
ZY, Y_feats = arcface(F.interpolate(Y_aligned, [112, 112], mode='bilinear', align_corners=True))
L_id =(1 - torch.cosine_similarity(embed, ZY, dim=1)).mean()
Y_attr = G.get_attr(Y)
L_attr = 0
for i in range(len(Xt_attr)):
L_attr += torch.mean(torch.pow(Xt_attr[i] - Y_attr[i], 2).reshape(batch_size, -1), dim=1).mean()
L_attr /= 2.0
L_rec = torch.sum(0.5 * torch.mean(torch.pow(Y - Xt, 2).reshape(batch_size, -1), dim=1) * same_person) / (same_person.sum() + 1e-6)
l_adv = 1
l_att = 10
l_id = 1
l_rec = 10
lossG = l_adv*L_adv + l_att*L_attr + l_id*L_id + l_rec*L_rec
with amp.scale_loss(lossG, opt_G) as scaled_loss:
scaled_loss.backward()
opt_G.step()
# train D
opt_D.zero_grad()
fake_D = D(Y.detach())
loss_fake = 0
for di in fake_D:
loss_fake += hinge_loss(di[0], False)
true_D = D(Xs)
loss_true = 0
for di in true_D:
loss_true += hinge_loss(di[0], True)
lossD = 0.5*(loss_true.mean() + loss_fake.mean())
with amp.scale_loss(lossD, opt_D) as scaled_loss:
scaled_loss.backward()
opt_D.step()
batch_time = time.time() - start_time
if iteration % show_step == 0:
image = make_image(Xs, Xt, Y)
vis.image(image[::-1, :, :], opts={'title': 'result'}, win='result')
cv2.imwrite('./gen_images/latest.jpg', image.transpose([1,2,0]))
print(f'epoch: {epoch} {iteration} / {len(dataloader)}')
print(f'lossD: {lossD.item()} lossG: {lossG.item()} batch_time: {batch_time}s')
print(f'L_adv: {L_adv.item()} L_id: {L_id.item()} L_attr: {L_attr.item()} L_rec: {L_rec.item()}')
if iteration % 1000 == 0:
torch.save(G.state_dict(), './saved_models/G_latest.pth')
torch.save(D.state_dict(), './saved_models/D_latest.pth')