forked from anne-urai/Tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
permn.m
166 lines (156 loc) · 5.78 KB
/
permn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
function [M, I] = permn(V, N, K)
% PERMN - permutations with repetition
% Using two input variables V and N, M = PERMN(V,N) returns all
% permutations of N elements taken from the vector V, with repetitions.
% V can be any type of array (numbers, cells etc.) and M will be of the
% same type as V. If V is empty or N is 0, M will be empty. M has the
% size numel(V).^N-by-N.
%
% When only a subset of these permutations is needed, you can call PERMN
% with 3 input variables: M = PERMN(V,N,K) returns only the K-ths
% permutations. The output is the same as M = PERMN(V,N) ; M = M(K,:),
% but it avoids memory issues that may occur when there are too many
% combinations. This is particulary useful when you only need a few
% permutations at a given time. If V or K is empty, or N is zero, M will
% be empty. M has the size numel(K)-by-N.
%
% [M, I] = PERMN(...) also returns an index matrix I so that M = V(I).
%
% Examples:
% M = permn([1 2 3],2) % returns the 9-by-2 matrix:
% 1 1
% 1 2
% 1 3
% 2 1
% 2 2
% 2 3
% 3 1
% 3 2
% 3 3
%
% M = permn([99 7],4) % returns the 16-by-4 matrix:
% 99 99 99 99
% 99 99 99 7
% 99 99 7 99
% 99 99 7 7
% ...
% 7 7 7 99
% 7 7 7 7
%
% M = permn({'hello!' 1:3},2) % returns the 4-by-2 cell array
% 'hello!' 'hello!'
% 'hello!' [1x3 double]
% [1x3 double] 'hello!'
% [1x3 double] [1x3 double]
%
% V = 11:15, N = 3, K = [2 124 21 99]
% M = permn(V, N, K) % returns the 4-by-3 matrix:
% % 11 11 12
% % 15 15 14
% % 11 15 11
% % 14 15 14
% % which are the 2nd, 124th, 21st and 99th permutations
% % Check with PERMN using two inputs
% M2 = permn(V,N) ; isequal(M2(K,:),M)
% % Note that M2 is a 125-by-3 matrix
%
% % PERMN can be used generate a binary table, as in
% B = permn([0 1],5)
%
% NB Matrix sizes increases exponentially at rate (n^N)*N.
%
% See also PERMS, NCHOOSEK
% ALLCOMB, PERMPOS on the File Exchange
% tested in Matlab 2016a
% version 6.1 (may 2016)
% (c) Jos van der Geest
% Matlab File Exchange Author ID: 10584
% email: [email protected]
% History
% 1.1 updated help text
% 2.0 new faster algorithm
% 3.0 (aug 2006) implemented very fast algorithm
% 3.1 (may 2007) Improved algorithm Roger Stafford pointed out that for some values, the floor
% operation on floating points, according to the IEEE 754 standard, could return
% erroneous values. His excellent solution was to add (1/2) to the values
% of A.
% 3.2 (may 2007) changed help and error messages slightly
% 4.0 (may 2008) again a faster implementation, based on ALLCOMB, suggested on the
% newsgroup comp.soft-sys.matlab on May 7th 2008 by "Helper". It was
% pointed out that COMBN(V,N) equals ALLCOMB(V,V,V...) (V repeated N
% times), ALLCMOB being faster. Actually version 4 is an improvement
% over version 1 ...
% 4.1 (jan 2010) removed call to FLIPLR, using refered indexing N:-1:1
% (is faster, suggestion of Jan Simon, jan 2010), removed REPMAT, and
% let NDGRID handle this
% 4.2 (apr 2011) corrrectly return a column vector for N = 1 (error pointed
% out by Wilson).
% 4.3 (apr 2013) make a reference to COMBNSUB
% 5.0 (may 2015) NAME CHANGED (COMBN -> PERMN) and updated description,
% following comment by Stephen Obeldick that this function is misnamed
% as it produces permutations with repetitions rather then combinations.
% 5.1 (may 2015) always calculate M via indices
% 6.0 (may 2015) merged the functionaly of permnsub (aka combnsub) and this
% function
% 6.1 (may 2016) fixed spelling errors
narginchk(2,3) ;
if fix(N) ~= N || N < 0 || numel(N) ~= 1 ;
error('permn:negativeN','Second argument should be a positive integer') ;
end
nV = numel(V) ;
if nargin==2, % PERMN(V,N) - return all permutations
if nV==0 || N == 0,
M = zeros(nV,N) ;
I = zeros(nV,N) ;
elseif N == 1,
% return column vectors
M = V(:) ;
I = (1:nV).' ;
else
% this is faster than the math trick used for the call with three
% arguments.
[Y{N:-1:1}] = ndgrid(1:nV) ;
I = reshape(cat(N+1,Y{:}),[],N) ;
M = V(I) ;
end
else % PERMN(V,N,K) - return a subset of all permutations
nK = numel(K) ;
if nV == 0 || N == 0 || nK == 0
M = zeros(numel(K), N) ;
I = zeros(numel(K), N) ;
elseif nK < 1 || any(K<1) || any(K ~= fix(K))
error('permn:InvalidIndex','Third argument should contain positive integers.') ;
else
V = reshape(V,1,[]) ; % v1.1 make input a row vector
nV = numel(V) ;
Npos = nV^N ;
if any(K > Npos)
warning('permn:IndexOverflow', ...
'Values of K exceeding the total number of combinations are saturated.')
K = min(K, Npos) ;
end
% The engine is based on version 3.2 with the correction
% suggested by Roger Stafford. This approach uses a single matrix
% multiplication.
B = nV.^(1-N:0) ;
I = ((K(:)-.5) * B) ; % matrix multiplication
I = rem(floor(I),nV) + 1 ;
M = V(I) ;
end
end
% Algorithm using for-loops
% which can be implemented in C or VB
%
% nv = length(V) ;
% C = zeros(nv^N,N) ; % declaration
% for ii=1:N,
% cc = 1 ;
% for jj=1:(nv^(ii-1)),
% for kk=1:nv,
% for mm=1:(nv^(N-ii)),
% C(cc,ii) = V(kk) ;
% cc = cc + 1 ;
% end
% end
% end
% end