-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw5.py
242 lines (194 loc) · 7.48 KB
/
hw5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# version code 941
# Please fill out this stencil and submit using the provided submission script.
from vecutil import list2vec
from solver import solve
from matutil import listlist2mat, coldict2mat, mat2rowdict, mat2coldict, identity
from mat import Mat
from GF2 import one
from vec import Vec
from hw4 import exchange
from independence import rank
from triangular import triangular_solve as ts
## Problem 1
w0 = list2vec([1,0,0])
w1 = list2vec([0,1,0])
w2 = list2vec([0,0,1])
v0 = list2vec([1,2,3])
v1 = list2vec([1,3,3])
v2 = list2vec([0,3,3])
# Fill in exchange_S1 and exchange_S2
# with appropriate lists of 3 vectors
exchange_S0 = [w0, w1, w2]
exchange_S1 = [v2, w0, w1]
exchange_S2 = [w0, v0, v2]
exchange_S3 = [v0, v1, v2]
## Problem 2
w0 = list2vec([0,one,0])
w1 = list2vec([0,0,one])
w2 = list2vec([one,one,one])
v0 = list2vec([one,0,one])
v1 = list2vec([one,0,0])
v2 = list2vec([one,one,0])
exchange_2_S0 = [w0, w1, w2]
exchange_2_S1 = [v0,w1,w2]
exchange_2_S2 = [v0,v1,w2]
exchange_2_S3 = [v0, v1, v2]
## Problem 3
def morph(S, B):
'''
Input:
- S: a list of distinct Vec instances
- B: a list of linearly independent Vec instances
- Span S == Span B
Output: a list of pairs of vectors to inject and eject
Example:
>>> #This is how our morph works. Yours may yield different results.
>>> S = [list2vec(v) for v in [[1,0,0],[0,1,0],[0,0,1]]]
>>> B = [list2vec(v) for v in [[1,1,0],[0,1,1],[1,0,1]]]
>>> morph(S, B)
[(Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 1, 1: 0, 2: 0})), (Vec({0, 1, 2},{0: 0, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0})), (Vec({0, 1, 2},{0: 1, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}))]
'''
ejectList = []
A = []
for iVec in B:
ejectVec = exchange(S, A, iVec)
A.append(iVec)
ejectList.append((iVec, ejectVec))
return ejectList
## Problem 4
# Please express each solution as a list of vectors (Vec instances)
row_space_1 = [list2vec([1,2,0]),list2vec([0,2,1])]
col_space_1 = [list2vec([1,0]),list2vec([0,1])]
row_space_2 = [list2vec([1,4,0,0]),list2vec([0,2,2,0]),list2vec([0,0,1,0])]
col_space_2 = [list2vec([1,0,0]),list2vec([4,2,0]),list2vec([0,2,1])]
row_space_3 = [list2vec([1])]
col_space_3 = [list2vec([1,2,3])]
row_space_4 = [list2vec([1,0]),list2vec([2,1])]
col_space_4 = [list2vec([1,2,3]),list2vec([0,1,4])]
## Problem 5
def my_is_independent(L):
'''
input: A list, L, of Vecs
output: A boolean indicating if the list is linearly independent
>>> L = [Vec({0, 1, 2},{0: 1, 1: 0, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 0, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 1}), Vec({0, 1, 2},{0: 1, 1: 1, 2: 0}), Vec({0, 1, 2},{0: 0, 1: 1, 2: 1})]
>>> my_is_independent(L)
False
>>> my_is_independent(L[:2])
True
>>> my_is_independent(L[:3])
True
>>> my_is_independent(L[1:4])
True
>>> my_is_independent(L[0:4])
False
>>> my_is_independent(L[2:])
False
>>> my_is_independent(L[2:5])
False
'''
if rank(L) == len(L):
return True
else:
return False
## Problem 6
def subset_basis(T):
'''
input: A list, T, of Vecs
output: A list, S, containing Vecs from T, that is a basis for the
space spanned by T.
>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> subset_basis([a0,a1,a2,a3]) == [Vec({'c', 'b', 'a', 'd'},{'a': 1}), Vec({'c', 'b', 'a', 'd'},{'b': 1}), Vec({'c', 'b', 'a', 'd'},{'c': 1})]
True
'''
S = []
curRank = 0
for iVec in T:
if rank(S + [iVec]) > curRank:
S.append(iVec)
curRank = rank(S)
return S
## Problem 7
def my_rank(L):
'''
input: A list, L, of Vecs
output: The rank of the list of Vecs
>>> my_rank([list2vec(v) for v in [[1,2,3],[4,5,6],[1.1,1.1,1.1]]])
2
'''
return len(subset_basis(L))
## Problem 8
# Please give each answer as a boolean
only_share_the_zero_vector_1 = True
only_share_the_zero_vector_2 = True
only_share_the_zero_vector_3 = True
## Problem 9
def direct_sum_decompose(U_basis, V_basis, w):
'''
input: A list of Vecs, U_basis, containing a basis for a vector space, U.
A list of Vecs, V_basis, containing a basis for a vector space, V.
A Vec, w, that belongs to the direct sum of these spaces.
output: A pair, (u, v), such that u+v=w and u is an element of U and
v is an element of V.
>>> U_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 1, 2: 0, 3: 0, 4: 6, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 11, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0}), Vec({0, 1, 2, 3, 4, 5},{0: 3, 1: 1.5, 2: 0, 3: 0, 4: 7.5, 5: 0})]
>>> V_basis = [Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 7, 3: 0, 4: 0, 5: 1}), Vec({0, 1, 2, 3, 4, 5},{0: 0, 1: 0, 2: 15, 3: 0, 4: 0, 5: 2})]
>>> w = Vec({0, 1, 2, 3, 4, 5},{0: 2, 1: 5, 2: 0, 3: 0, 4: 1, 5: 0})
>>> direct_sum_decompose(U_basis, V_basis, w) == (Vec({0, 1, 2, 3, 4, 5},{0: 2.0, 1: 4.999999999999972, 2: 0.0, 3: 0.0, 4: 1.0, 5: 0.0}), Vec({0, 1, 2, 3, 4, 5},{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0}))
True
'''
testMat = coldict2mat(U_basis+V_basis)
coef = solve(testMat, w)
Nu = len(U_basis)
Nv = len(V_basis)
retU = Vec(U_basis[0].D, {})
retV = Vec(V_basis[0].D, {})
for i in range(Nu):
retU += coef[i]*U_basis[i]
for i in range(Nv):
retV += coef[i+Nu] * V_basis[i]
return (retU, retV)
## Problem 10
def is_invertible(M):
'''
input: A matrix, M
outpit: A boolean indicating if M is invertible.
>>> M = Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): 0, (1, 2): 1, (3, 2): 0, (0, 0): 1, (3, 3): 4, (3, 0): 0, (3, 1): 0, (1, 1): 2, (2, 1): 0, (0, 2): 1, (2, 0): 0, (1, 3): 0, (2, 3): 1, (2, 2): 3, (1, 0): 0, (0, 3): 0})
>>> is_invertible(M)
True
'''
MRowDict = list(mat2rowdict(M).values())
if len(MRowDict) == my_rank(MRowDict):
if len(M.D[0])*len(M.D[1]) == len(M.f):
if len(M.D[0]) == len(M.D[1]):
return True
return False
## Problem 11
def find_matrix_inverse(A):
'''
input: An invertible matrix, A, over GF(2)
output: Inverse of A
>>> M = Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (1, 2): 0, (0, 0): 0, (2, 0): 0, (1, 0): one, (2, 2): one, (0, 2): 0, (2, 1): 0, (1, 1): 0})
>>> find_matrix_inverse(M) == Mat(({0, 1, 2}, {0, 1, 2}), {(0, 1): one, (2, 0): 0, (0, 0): 0, (2, 2): one, (1, 0): one, (1, 2): 0, (1, 1): 0, (2, 1): 0, (0, 2): 0})
True
'''
bRows = []
idMat = list(mat2coldict(identity(A.D[0], one)).values())
for i in idMat:
bRows.append(solve(A,i))
return coldict2mat(bRows)
## Problem 12
def find_triangular_matrix_inverse(A):
'''
input: An upper triangular Mat, A, with nonzero diagonal elements
output: Inverse of A
>>> A = listlist2mat([[1, .5, .2, 4],[0, 1, .3, .9],[0,0,1,.1],[0,0,0,1]])
>>> find_triangular_matrix_inverse(A) == Mat(({0, 1, 2, 3}, {0, 1, 2, 3}), {(0, 1): -0.5, (1, 2): -0.3, (3, 2): 0.0, (0, 0): 1.0, (3, 3): 1.0, (3, 0): 0.0, (3, 1): 0.0, (2, 1): 0.0, (0, 2): -0.05000000000000002, (2, 0): 0.0, (1, 3): -0.87, (2, 3): -0.1, (2, 2): 1.0, (1, 0): 0.0, (0, 3): -3.545, (1, 1): 1.0})
True
'''
bRows = []
idMat = list(mat2coldict(identity(A.D[0], 1)).values())
for i in idMat:
bRows.append(ts(list(mat2rowdict(A).values()),list(range(len(A.D[0]))),i))
return coldict2mat(bRows)